Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
1 result

Readme.txt

Blame
  • Readme.txt 1.55 KiB
    {\rtf1\ansi\ansicpg1252\cocoartf2576
    \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
    {\colortbl;\red255\green255\blue255;}
    {\*\expandedcolortbl;;}
    \paperw11900\paperh16840\margl1440\margr1440\vieww11520\viewh8400\viewkind0
    \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0
    
    \f0\fs24 \cf0 This repository represents the final year project Software Development Project.\
    \
    It has 2 directory:\
    1. face_recog_model :- folder for machine learning model\
    2. FaceRecogAttendance :- folder for client application code\
    \
    ****face_recog_model*****\
    1. Demo2 :- the machine learning model code\
    2. Face_extraction :- the script to extract faces from images\
    3. convert_to_coreml :- a script to convert the tensorflow model to cormel format\
    \
    *****FaceRecogAttendance*****\
    1. To test the application, simply run FaceRecogAttendance.xcworkspace in Xcode. You might need to change the bundle identifier and signing capabilities in Xcode.\
    \
    2. The directory have 3 main folders:\
    	1. Model - the data model in the application is all stored here\
    	2. View - the user interfaces of the application - the storyboard \
    	3. Controllers - all the controllers in the application are stored here\
    \
    	4. Some important file:\
    	GoogleService-info.plist :- a configuration file to access Firebase Storage\
    	Info.plist :- the client application configuration file\
    	FaceClassifierV3.mlmodel :- the coreml machine model converted from the tensorflow model.\
    	Pods :- cocoa pods file that is used in this application
    }