Skip to content
Snippets Groups Projects
Select Git revision
  • main default protected
1 result

EncryptDecrypt.h

Blame
  • plot_svm_nonlinear.py 709 B
    """
    ==============
    Non-linear SVM
    ==============
    
    Perform binary classification using non-linear SVC
    with RBF kernel. The target to predict is a XOR of the
    inputs.
    
    """
    print __doc__
    
    import numpy as np
    import pylab as pl
    from scikits.learn import svm
    
    xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
    np.random.seed(0)
    X = np.random.randn(300, 2)
    Y = np.logical_xor(X[:,0]>0, X[:,1]>0)
    
    # fit the model
    clf = svm.NuSVC()
    clf.fit(X, Y)
    
    # plot the line, the points, and the nearest vectors to the plane
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    
    pl.set_cmap(pl.cm.Paired)
    pl.pcolormesh(xx, yy, Z)
    pl.scatter(X[:,0], X[:,1], c=Y)
    
    pl.axis('tight')
    pl.show()