Skip to content
Snippets Groups Projects
Commit e4ac2430 authored by Mathieu Blondel's avatar Mathieu Blondel
Browse files

Fix doc!

parent 6633648a
No related merge requests found
...@@ -11,7 +11,6 @@ ...@@ -11,7 +11,6 @@
supervised_learning.rst supervised_learning.rst
unsupervised_learning.rst unsupervised_learning.rst
model_selection.rst model_selection.rst
meta_learners.rst
Dataset loading utilities <datasets/index.rst> Dataset loading utilities <datasets/index.rst>
Preprocessing data <modules/preprocessing.rst> Preprocessing data <modules/preprocessing.rst>
modules/feature_extraction.rst modules/feature_extraction.rst
......
============== =====================
Meta-learners Multiclass algorithms
============== =====================
.. currentmodule:: scikits.learn.meta .. currentmodule:: scikits.learn.meta
...@@ -27,7 +27,7 @@ corresponding classifier. This is the most commonly used strategy and is a ...@@ -27,7 +27,7 @@ corresponding classifier. This is the most commonly used strategy and is a
fair default choice. Below is an example:: fair default choice. Below is an example::
>>> from scikits.learn import datasets >>> from scikits.learn import datasets
>>> from scikits.learn.meta import OneVsRestClassifier >>> from scikits.learn.multiclass import OneVsRestClassifier
>>> from scikits.learn.svm import LinearSVC >>> from scikits.learn.svm import LinearSVC
>>> iris = datasets.load_iris() >>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target >>> X, y = iris.data, iris.target
...@@ -55,7 +55,7 @@ a small subset of the data whereas, with one-vs-the-rest, the complete ...@@ -55,7 +55,7 @@ a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used `n_classes` times. Below is an example:: dataset is used `n_classes` times. Below is an example::
>>> from scikits.learn import datasets >>> from scikits.learn import datasets
>>> from scikits.learn.meta import OneVsOneClassifier >>> from scikits.learn.multiclass import OneVsOneClassifier
>>> from scikits.learn.svm import LinearSVC >>> from scikits.learn.svm import LinearSVC
>>> iris = datasets.load_iris() >>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target >>> X, y = iris.data, iris.target
...@@ -107,7 +107,7 @@ effect to bagging. ...@@ -107,7 +107,7 @@ effect to bagging.
Example:: Example::
>>> from scikits.learn import datasets >>> from scikits.learn import datasets
>>> from scikits.learn.meta import OutputCodeClassifier >>> from scikits.learn.multiclass import OutputCodeClassifier
>>> from scikits.learn.svm import LinearSVC >>> from scikits.learn.svm import LinearSVC
>>> iris = datasets.load_iris() >>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target >>> X, y = iris.data, iris.target
......
...@@ -15,4 +15,5 @@ Supervised learning ...@@ -15,4 +15,5 @@ Supervised learning
modules/gaussian_process modules/gaussian_process
modules/pls modules/pls
modules/naive_bayes modules/naive_bayes
modules/multiclass
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment