Skip to content
Snippets Groups Projects
Commit 4e3f0083 authored by Andreas Mueller's avatar Andreas Mueller
Browse files

DOC minor fixes to rst and image paths

parent 5b29e82a
No related branches found
No related tags found
No related merge requests found
......@@ -108,8 +108,8 @@ Sample generators
In addition, scikit-learn includes various random sample generators that
can be used to build artifical datasets of controled size and complexity.
.. image:: ../auto_examples/images/plot_random_dataset_1.png
:target: ../auto_examples/plot_random_dataset.html
.. image:: ../auto_examples/datasets/images/plot_random_dataset_1.png
:target: ../auto_examples/datasets/plot_random_dataset.html
:scale: 50
:align: center
......
......@@ -28,6 +28,7 @@ Usage
The :class:`Pipeline` is build using a list of ``(key, value)`` pairs, where
the ``key`` a string containing the name you want to give this step and ``value``
is an estimator object::
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
......@@ -40,21 +41,25 @@ is an estimator object::
shrinking=True, tol=0.001, verbose=False))])
The estimators of the pipeline are stored as a list in the ``steps`` attribute::
>>> clf.steps[0]
('reduce_dim', PCA(copy=True, n_components=None, whiten=False))
and as a ``dict`` in ``named_steps``::
>>> clf.named_steps['reduce_dim']
PCA(copy=True, n_components=None, whiten=False)
Parameters of the estimators in the pipeline can be accessed using the
``<estimator>__<parameter>`` syntax::
>>> clf.set_params(svm__C=10) # NORMALIZE_WHITESPACE
Pipeline(steps=[('reduce_dim', PCA(copy=True, n_components=None, whiten=False)), ('svm', SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', probability=False, shrinking=True, tol=0.001,
verbose=False))])
This is particularly important for doing grid searches::
>>> from sklearn.grid_search import GridSearchCV
>>> params = dict(reduce_dim__n_components=[2, 5, 10],
... svm__C=[0.1, 10, 100])
......
......@@ -13,12 +13,14 @@ Videos
- `Introduction to scikit-learn
<http://videolectures.net/icml2010_varaquaux_scik/>`_ by `Gael Varoquaux`_ at
ICML 2010
A three minute video from a very early stage of the scikit, explaining the
basic idea and approach we are following.
- `Introduction to statistical learning with scikit
learn <http://archive.org/search.php?query=scikit-learn>`_ by
`Gael Varoquaux`_ at SciPy 2011
An extensive tutorial, consisting of four sessions of one hour.
The tutorial covers basics of machine learning,
many algorithms and how to apply them using scikit-learn. The
......@@ -36,10 +38,12 @@ Videos
- `Introduction to Interactive Predictive Analytics in Python with scikit-learn <http://www.youtube.com/watch?v=Zd5dfooZWG4>`_
by `Olivier Grisel`_ at PyCon 2012
3-hours long introduction to prediction tasks using the scikit-learn.
- `scikit-learn - Machine Learning in Python <http://marakana.com/s/scikit-learn_machine_learning_in_python,1152/index.html>`_
by `Jake Vanderplas`_ at the 2012 PyData workshop at Google
Interactive demonstration of some scikit-learn features. 75 minutes.
.. _Gael Varoquaux: http://gael-varoquaux.info
......
......@@ -179,8 +179,8 @@ which we have not used to train the classifier::
The corresponding image is the following:
.. image:: ../../auto_examples/images/datasets/plot_digits_last_image_1.png
:target: ../../auto_examples/plot_digits_last_image.html
.. image:: ../../auto_examples/datasets/images/plot_digits_last_image_1.png
:target: ../../auto_examples/datasets/plot_digits_last_image.html
:align: center
:scale: 50
......
......@@ -31,8 +31,8 @@ needs to be preprocessed to be used by the scikit.
.. topic:: An example of reshaping data: the digits dataset
.. image:: ../../auto_examples/images/datasets/plot_digits_last_image_1.png
:target: ../../auto_examples/plot_digits_last_image.html
.. image:: ../../auto_examples/datasets/images/plot_digits_last_image_1.png
:target: ../../auto_examples/datasets/plot_digits_last_image.html
:align: right
:scale: 60
......
......@@ -39,8 +39,8 @@ Nearest neighbor and the curse of dimensionality
.. topic:: Classifying irises:
.. image:: ../../auto_examples/images/datasets/plot_iris_dataset_1.png
:target: ../../auto_examples/plot_iris_dataset.html
.. image:: ../../auto_examples/datasets/images/plot_iris_dataset_1.png
:target: ../../auto_examples/datasets/plot_iris_dataset.html
:align: right
:scale: 65
......@@ -546,8 +546,8 @@ creating an decision energy by positioning *kernels* on observations:
`svm_gui.py`; add data points of both classes with right and left button,
fit the model and change parameters and data.
.. image:: ../../auto_examples/images/datasets/plot_iris_dataset_1.png
:target: ../../auto_examples/plot_iris_dataset.html
.. image:: ../../auto_examples/datasets/images/plot_iris_dataset_1.png
:target: ../../auto_examples/datasets/plot_iris_dataset.html
:align: right
:scale: 70
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment