Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • 0.19.X
  • discrete
  • 0.18.X
  • ignore_lambda_to_diff_errors
  • 0.17.X
  • authors-update
  • 0.16.X
  • 0.15.X
  • 0.14.X
  • debian
  • 0.13.X
  • 0.12.X
  • 0.11.X
  • 0.10.X
  • 0.9.X
  • 0.6.X
  • 0.7.X
  • 0.8.X
  • 0.19.1
  • 0.19.0
  • 0.19b2
  • 0.19b1
  • 0.19-branching
  • 0.18.2
  • 0.18.1
  • 0.18
  • 0.18rc2
  • 0.18rc1
  • 0.18rc
  • 0.17.1-1
  • 0.17.1
  • debian/0.17.0-4
  • debian/0.17.0-3
  • debian/0.17.0-1
  • 0.17
  • debian/0.17.0_b1+git14-g4e6829c-1
  • debian/0.17.0_b1-1
  • 0.17b1
39 results

test_validation.py

Blame
  • test_validation.py NaN GiB
    """Test the validation module"""
    from __future__ import division
    
    import sys
    import warnings
    import tempfile
    import os
    from time import sleep
    
    import numpy as np
    from scipy.sparse import coo_matrix, csr_matrix
    
    from sklearn.utils.testing import assert_true
    from sklearn.utils.testing import assert_false
    from sklearn.utils.testing import assert_equal
    from sklearn.utils.testing import assert_almost_equal
    from sklearn.utils.testing import assert_raises
    from sklearn.utils.testing import assert_raise_message
    from sklearn.utils.testing import assert_greater
    from sklearn.utils.testing import assert_less
    from sklearn.utils.testing import assert_array_almost_equal
    from sklearn.utils.testing import assert_array_equal
    from sklearn.utils.testing import assert_warns
    from sklearn.utils.mocking import CheckingClassifier, MockDataFrame
    
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import cross_val_predict
    from sklearn.model_selection import permutation_test_score
    from sklearn.model_selection import KFold
    from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import LeaveOneOut
    from sklearn.model_selection import LeaveOneGroupOut
    from sklearn.model_selection import LeavePGroupsOut
    from sklearn.model_selection import GroupKFold
    from sklearn.model_selection import GroupShuffleSplit
    from sklearn.model_selection import learning_curve
    from sklearn.model_selection import validation_curve
    from sklearn.model_selection._validation import _check_is_permutation
    
    from sklearn.datasets import make_regression
    from sklearn.datasets import load_boston
    from sklearn.datasets import load_iris
    from sklearn.metrics import explained_variance_score
    from sklearn.metrics import make_scorer
    from sklearn.metrics import precision_score
    
    from sklearn.linear_model import Ridge, LogisticRegression
    from sklearn.linear_model import PassiveAggressiveClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.cluster import KMeans
    
    from sklearn.preprocessing import Imputer
    from sklearn.preprocessing import LabelEncoder
    from sklearn.pipeline import Pipeline
    
    from sklearn.externals.six.moves import cStringIO as StringIO
    from sklearn.base import BaseEstimator
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.utils import shuffle
    from sklearn.datasets import make_classification
    from sklearn.datasets import make_multilabel_classification
    
    from sklearn.model_selection.tests.common import OneTimeSplitter
    from sklearn.model_selection import GridSearchCV
    
    
    try:
        WindowsError
    except NameError:
        WindowsError = None
    
    
    class MockImprovingEstimator(BaseEstimator):
        """Dummy classifier to test the learning curve"""
        def __init__(self, n_max_train_sizes):
            self.n_max_train_sizes = n_max_train_sizes
            self.train_sizes = 0
            self.X_subset = None
    
        def fit(self, X_subset, y_subset=None):
            self.X_subset = X_subset
            self.train_sizes = X_subset.shape[0]
            return self
    
        def predict(self, X):
            raise NotImplementedError
    
        def score(self, X=None, Y=None):
            # training score becomes worse (2 -> 1), test error better (0 -> 1)
            if self._is_training_data(X):
                return 2. - float(self.train_sizes) / self.n_max_train_sizes
            else:
                return float(self.train_sizes) / self.n_max_train_sizes
    
        def _is_training_data(self, X):
            return X is self.X_subset
    
    
    class MockIncrementalImprovingEstimator(MockImprovingEstimator):
        """Dummy classifier that provides partial_fit"""
        def __init__(self, n_max_train_sizes):
            super(MockIncrementalImprovingEstimator,
                  self).__init__(n_max_train_sizes)
            self.x = None
    
        def _is_training_data(self, X):
            return self.x in X
    
        def partial_fit(self, X, y=None, **params):
            self.train_sizes += X.shape[0]
            self.x = X[0]
    
    
    class MockEstimatorWithParameter(BaseEstimator):
        """Dummy classifier to test the validation curve"""
        def __init__(self, param=0.5):
            self.X_subset = None
            self.param = param
    
        def fit(self, X_subset, y_subset):
            self.X_subset = X_subset
            self.train_sizes = X_subset.shape[0]
            return self
    
        def predict(self, X):
            raise NotImplementedError
    
        def score(self, X=None, y=None):
            return self.param if self._is_training_data(X) else 1 - self.param
    
        def _is_training_data(self, X):
            return X is self.X_subset
    
    
    class MockEstimatorWithSingleFitCallAllowed(MockEstimatorWithParameter):
        """Dummy classifier that disallows repeated calls of fit method"""
    
        def fit(self, X_subset, y_subset):
            assert_false(
                hasattr(self, 'fit_called_'),
                'fit is called the second time'
            )
            self.fit_called_ = True
            return super(type(self), self).fit(X_subset, y_subset)
    
        def predict(self, X):
            raise NotImplementedError
    
    
    class MockClassifier(object):
        """Dummy classifier to test the cross-validation"""
    
        def __init__(self, a=0, allow_nd=False):
            self.a = a
            self.allow_nd = allow_nd
    
        def fit(self, X, Y=None, sample_weight=None, class_prior=None,
                sparse_sample_weight=None, sparse_param=None, dummy_int=None,
                dummy_str=None, dummy_obj=None, callback=None):
            """The dummy arguments are to test that this fit function can
            accept non-array arguments through cross-validation, such as:
                - int
                - str (this is actually array-like)
                - object
                - function
            """
            self.dummy_int = dummy_int
            self.dummy_str = dummy_str
            self.dummy_obj = dummy_obj
            if callback is not None:
                callback(self)
    
            if self.allow_nd:
                X = X.reshape(len(X), -1)
            if X.ndim >= 3 and not self.allow_nd:
                raise ValueError('X cannot be d')
            if sample_weight is not None:
                assert_true(sample_weight.shape[0] == X.shape[0],
                            'MockClassifier extra fit_param sample_weight.shape[0]'
                            ' is {0}, should be {1}'.format(sample_weight.shape[0],
                                                            X.shape[0]))
            if class_prior is not None:
                assert_true(class_prior.shape[0] == len(np.unique(y)),
                            'MockClassifier extra fit_param class_prior.shape[0]'
                            ' is {0}, should be {1}'.format(class_prior.shape[0],
                                                            len(np.unique(y))))
            if sparse_sample_weight is not None:
                fmt = ('MockClassifier extra fit_param sparse_sample_weight'
                       '.shape[0] is {0}, should be {1}')
                assert_true(sparse_sample_weight.shape[0] == X.shape[0],
                            fmt.format(sparse_sample_weight.shape[0], X.shape[0]))
            if sparse_param is not None:
                fmt = ('MockClassifier extra fit_param sparse_param.shape '
                       'is ({0}, {1}), should be ({2}, {3})')
                assert_true(sparse_param.shape == P_sparse.shape,
                            fmt.format(sparse_param.shape[0],
                                       sparse_param.shape[1],
                                       P_sparse.shape[0], P_sparse.shape[1]))
            return self
    
        def predict(self, T):
            if self.allow_nd:
                T = T.reshape(len(T), -1)
            return T[:, 0]
    
        def score(self, X=None, Y=None):
            return 1. / (1 + np.abs(self.a))
    
        def get_params(self, deep=False):
            return {'a': self.a, 'allow_nd': self.allow_nd}
    
    
    # XXX: use 2D array, since 1D X is being detected as a single sample in
    # check_consistent_length
    X = np.ones((10, 2))
    X_sparse = coo_matrix(X)
    y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4])
    # The number of samples per class needs to be > n_splits,
    # for StratifiedKFold(n_splits=3)
    y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3])
    P_sparse = coo_matrix(np.eye(5))
    
    
    def test_cross_val_score():
        clf = MockClassifier()
    
        for a in range(-10, 10):
            clf.a = a
            # Smoke test
            scores = cross_val_score(clf, X, y2)
            assert_array_equal(scores, clf.score(X, y2))
    
            # test with multioutput y
            multioutput_y = np.column_stack([y2, y2[::-1]])
            scores = cross_val_score(clf, X_sparse, multioutput_y)
            assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
    
            scores = cross_val_score(clf, X_sparse, y2)
            assert_array_equal(scores, clf.score(X_sparse, y2))
    
            # test with multioutput y
            scores = cross_val_score(clf, X_sparse, multioutput_y)
            assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
    
        # test with X and y as list
        list_check = lambda x: isinstance(x, list)
        clf = CheckingClassifier(check_X=list_check)
        scores = cross_val_score(clf, X.tolist(), y2.tolist())
    
        clf = CheckingClassifier(check_y=list_check)
        scores = cross_val_score(clf, X, y2.tolist())
    
        assert_raises(ValueError, cross_val_score, clf, X, y2, scoring="sklearn")
    
        # test with 3d X and
        X_3d = X[:, :, np.newaxis]
        clf = MockClassifier(allow_nd=True)
        scores = cross_val_score(clf, X_3d, y2)
    
        clf = MockClassifier(allow_nd=False)
        assert_raises(ValueError, cross_val_score, clf, X_3d, y2)
    
    
    def test_cross_val_score_predict_groups():
        # Check if ValueError (when groups is None) propagates to cross_val_score
        # and cross_val_predict
        # And also check if groups is correctly passed to the cv object
        X, y = make_classification(n_samples=20, n_classes=2, random_state=0)
    
        clf = SVC(kernel="linear")
    
        group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
                     GroupShuffleSplit()]
        for cv in group_cvs:
            assert_raise_message(ValueError,
                                 "The 'groups' parameter should not be None.",
                                 cross_val_score, estimator=clf, X=X, y=y, cv=cv)
            assert_raise_message(ValueError,
                                 "The 'groups' parameter should not be None.",
                                 cross_val_predict, estimator=clf, X=X, y=y, cv=cv)
    
    
    def test_cross_val_score_pandas():
        # check cross_val_score doesn't destroy pandas dataframe
        types = [(MockDataFrame, MockDataFrame)]
        try:
            from pandas import Series, DataFrame
            types.append((Series, DataFrame))
        except ImportError:
            pass
        for TargetType, InputFeatureType in types:
            # X dataframe, y series
            # 3 fold cross val is used so we need atleast 3 samples per class
            X_df, y_ser = InputFeatureType(X), TargetType(y2)
            check_df = lambda x: isinstance(x, InputFeatureType)
            check_series = lambda x: isinstance(x, TargetType)
            clf = CheckingClassifier(check_X=check_df, check_y=check_series)
            cross_val_score(clf, X_df, y_ser)
    
    
    def test_cross_val_score_mask():
        # test that cross_val_score works with boolean masks
        svm = SVC(kernel="linear")
        iris = load_iris()
        X, y = iris.data, iris.target
        kfold = KFold(5)
        scores_indices = cross_val_score(svm, X, y, cv=kfold)
        kfold = KFold(5)
        cv_masks = []
        for train, test in kfold.split(X, y):
            mask_train = np.zeros(len(y), dtype=np.bool)
            mask_test = np.zeros(len(y), dtype=np.bool)
            mask_train[train] = 1
            mask_test[test] = 1
            cv_masks.append((train, test))
        scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
        assert_array_equal(scores_indices, scores_masks)
    
    
    def test_cross_val_score_precomputed():
        # test for svm with precomputed kernel
        svm = SVC(kernel="precomputed")
        iris = load_iris()
        X, y = iris.data, iris.target
        linear_kernel = np.dot(X, X.T)
        score_precomputed = cross_val_score(svm, linear_kernel, y)
        svm = SVC(kernel="linear")
        score_linear = cross_val_score(svm, X, y)
        assert_array_almost_equal(score_precomputed, score_linear)
    
        # test with callable
        svm = SVC(kernel=lambda x, y: np.dot(x, y.T))
        score_callable = cross_val_score(svm, X, y)
        assert_array_almost_equal(score_precomputed, score_callable)
    
        # Error raised for non-square X
        svm = SVC(kernel="precomputed")
        assert_raises(ValueError, cross_val_score, svm, X, y)
    
        # test error is raised when the precomputed kernel is not array-like
        # or sparse
        assert_raises(ValueError, cross_val_score, svm,
                      linear_kernel.tolist(), y)
    
    
    def test_cross_val_score_fit_params():
        clf = MockClassifier()
        n_samples = X.shape[0]
        n_classes = len(np.unique(y))
    
        W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))),
                              shape=(10, 1))
        P_sparse = coo_matrix(np.eye(5))
    
        DUMMY_INT = 42
        DUMMY_STR = '42'
        DUMMY_OBJ = object()
    
        def assert_fit_params(clf):
            # Function to test that the values are passed correctly to the
            # classifier arguments for non-array type
    
            assert_equal(clf.dummy_int, DUMMY_INT)
            assert_equal(clf.dummy_str, DUMMY_STR)
            assert_equal(clf.dummy_obj, DUMMY_OBJ)
    
        fit_params = {'sample_weight': np.ones(n_samples),
                      'class_prior': np.ones(n_classes) / n_classes,
                      'sparse_sample_weight': W_sparse,
                      'sparse_param': P_sparse,
                      'dummy_int': DUMMY_INT,
                      'dummy_str': DUMMY_STR,
                      'dummy_obj': DUMMY_OBJ,
                      'callback': assert_fit_params}
        cross_val_score(clf, X, y, fit_params=fit_params)
    
    
    def test_cross_val_score_score_func():
        clf = MockClassifier()
        _score_func_args = []
    
        def score_func(y_test, y_predict):
            _score_func_args.append((y_test, y_predict))
            return 1.0
    
        with warnings.catch_warnings(record=True):
            scoring = make_scorer(score_func)
            score = cross_val_score(clf, X, y, scoring=scoring)
        assert_array_equal(score, [1.0, 1.0, 1.0])
        assert len(_score_func_args) == 3
    
    
    def test_cross_val_score_errors():
        class BrokenEstimator:
            pass
    
        assert_raises(TypeError, cross_val_score, BrokenEstimator(), X)
    
    
    def test_cross_val_score_with_score_func_classification():
        iris = load_iris()
        clf = SVC(kernel='linear')
    
        # Default score (should be the accuracy score)
        scores = cross_val_score(clf, iris.data, iris.target, cv=5)
        assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)
    
        # Correct classification score (aka. zero / one score) - should be the
        # same as the default estimator score
        zo_scores = cross_val_score(clf, iris.data, iris.target,
                                    scoring="accuracy", cv=5)
        assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
    
        # F1 score (class are balanced so f1_score should be equal to zero/one
        # score
        f1_scores = cross_val_score(clf, iris.data, iris.target,
                                    scoring="f1_weighted", cv=5)
        assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
    
    
    def test_cross_val_score_with_score_func_regression():
        X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
                               random_state=0)
        reg = Ridge()
    
        # Default score of the Ridge regression estimator
        scores = cross_val_score(reg, X, y, cv=5)
        assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
    
        # R2 score (aka. determination coefficient) - should be the
        # same as the default estimator score
        r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
        assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
    
        # Mean squared error; this is a loss function, so "scores" are negative
        neg_mse_scores = cross_val_score(reg, X, y, cv=5,
                                         scoring="neg_mean_squared_error")
        expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
        assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
    
        # Explained variance
        scoring = make_scorer(explained_variance_score)
        ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
        assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
    
    
    def test_permutation_score():
        iris = load_iris()
        X = iris.data
        X_sparse = coo_matrix(X)
        y = iris.target
        svm = SVC(kernel='linear')
        cv = StratifiedKFold(2)
    
        score, scores, pvalue = permutation_test_score(
            svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
        assert_greater(score, 0.9)
        assert_almost_equal(pvalue, 0.0, 1)
    
        score_group, _, pvalue_group = permutation_test_score(
            svm, X, y, n_permutations=30, cv=cv, scoring="accuracy",
            groups=np.ones(y.size), random_state=0)
        assert_true(score_group == score)
        assert_true(pvalue_group == pvalue)
    
        # check that we obtain the same results with a sparse representation
        svm_sparse = SVC(kernel='linear')
        cv_sparse = StratifiedKFold(2)
        score_group, _, pvalue_group = permutation_test_score(
            svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse,
            scoring="accuracy", groups=np.ones(y.size), random_state=0)
    
        assert_true(score_group == score)
        assert_true(pvalue_group == pvalue)
    
        # test with custom scoring object
        def custom_score(y_true, y_pred):
            return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) /
                    y_true.shape[0])
    
        scorer = make_scorer(custom_score)
        score, _, pvalue = permutation_test_score(
            svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0)
        assert_almost_equal(score, .93, 2)
        assert_almost_equal(pvalue, 0.01, 3)
    
        # set random y
        y = np.mod(np.arange(len(y)), 3)
    
        score, scores, pvalue = permutation_test_score(
            svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
    
        assert_less(score, 0.5)
        assert_greater(pvalue, 0.2)
    
    
    def test_permutation_test_score_allow_nans():
        # Check that permutation_test_score allows input data with NaNs
        X = np.arange(200, dtype=np.float64).reshape(10, -1)
        X[2, :] = np.nan
        y = np.repeat([0, 1], X.shape[0] / 2)
        p = Pipeline([
            ('imputer', Imputer(strategy='mean', missing_values='NaN')),
            ('classifier', MockClassifier()),
        ])
        permutation_test_score(p, X, y, cv=5)
    
    
    def test_cross_val_score_allow_nans():
        # Check that cross_val_score allows input data with NaNs
        X = np.arange(200, dtype=np.float64).reshape(10, -1)
        X[2, :] = np.nan
        y = np.repeat([0, 1], X.shape[0] / 2)
        p = Pipeline([
            ('imputer', Imputer(strategy='mean', missing_values='NaN')),
            ('classifier', MockClassifier()),
        ])
        cross_val_score(p, X, y, cv=5)
    
    
    def test_cross_val_score_multilabel():
        X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1],
                      [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]])
        y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1],
                      [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]])
        clf = KNeighborsClassifier(n_neighbors=1)
        scoring_micro = make_scorer(precision_score, average='micro')
        scoring_macro = make_scorer(precision_score, average='macro')
        scoring_samples = make_scorer(precision_score, average='samples')
        score_micro = cross_val_score(clf, X, y, scoring=scoring_micro, cv=5)
        score_macro = cross_val_score(clf, X, y, scoring=scoring_macro, cv=5)
        score_samples = cross_val_score(clf, X, y, scoring=scoring_samples, cv=5)
        assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
        assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
        assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
    
    
    def test_cross_val_predict():
        boston = load_boston()
        X, y = boston.data, boston.target
        cv = KFold()
    
        est = Ridge()
    
        # Naive loop (should be same as cross_val_predict):
        preds2 = np.zeros_like(y)
        for train, test in cv.split(X, y):
            est.fit(X[train], y[train])
            preds2[test] = est.predict(X[test])
    
        preds = cross_val_predict(est, X, y, cv=cv)
        assert_array_almost_equal(preds, preds2)
    
        preds = cross_val_predict(est, X, y)
        assert_equal(len(preds), len(y))
    
        cv = LeaveOneOut()
        preds = cross_val_predict(est, X, y, cv=cv)
        assert_equal(len(preds), len(y))
    
        Xsp = X.copy()
        Xsp *= (Xsp > np.median(Xsp))
        Xsp = coo_matrix(Xsp)
        preds = cross_val_predict(est, Xsp, y)
        assert_array_almost_equal(len(preds), len(y))
    
        preds = cross_val_predict(KMeans(), X)
        assert_equal(len(preds), len(y))
    
        class BadCV():
            def split(self, X, y=None, groups=None):
                for i in range(4):
                    yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])
    
        assert_raises(ValueError, cross_val_predict, est, X, y, cv=BadCV())
    
    
    def test_cross_val_predict_input_types():
        iris = load_iris()
        X, y = iris.data, iris.target
        X_sparse = coo_matrix(X)
        multioutput_y = np.column_stack([y, y[::-1]])
    
        clf = Ridge(fit_intercept=False, random_state=0)
        # 3 fold cv is used --> atleast 3 samples per class
        # Smoke test
        predictions = cross_val_predict(clf, X, y)
        assert_equal(predictions.shape, (150,))
    
        # test with multioutput y
        predictions = cross_val_predict(clf, X_sparse, multioutput_y)
        assert_equal(predictions.shape, (150, 2))
    
        predictions = cross_val_predict(clf, X_sparse, y)
        assert_array_equal(predictions.shape, (150,))
    
        # test with multioutput y
        predictions = cross_val_predict(clf, X_sparse, multioutput_y)
        assert_array_equal(predictions.shape, (150, 2))
    
        # test with X and y as list
        list_check = lambda x: isinstance(x, list)
        clf = CheckingClassifier(check_X=list_check)
        predictions = cross_val_predict(clf, X.tolist(), y.tolist())
    
        clf = CheckingClassifier(check_y=list_check)
        predictions = cross_val_predict(clf, X, y.tolist())
    
        # test with 3d X and
        X_3d = X[:, :, np.newaxis]
        check_3d = lambda x: x.ndim == 3
        clf = CheckingClassifier(check_X=check_3d)
        predictions = cross_val_predict(clf, X_3d, y)
        assert_array_equal(predictions.shape, (150,))
    
    
    def test_cross_val_predict_pandas():
        # check cross_val_score doesn't destroy pandas dataframe
        types = [(MockDataFrame, MockDataFrame)]
        try:
            from pandas import Series, DataFrame
            types.append((Series, DataFrame))
        except ImportError:
            pass
        for TargetType, InputFeatureType in types:
            # X dataframe, y series
            X_df, y_ser = InputFeatureType(X), TargetType(y2)
            check_df = lambda x: isinstance(x, InputFeatureType)
            check_series = lambda x: isinstance(x, TargetType)
            clf = CheckingClassifier(check_X=check_df, check_y=check_series)
            cross_val_predict(clf, X_df, y_ser)
    
    
    def test_cross_val_score_sparse_fit_params():
        iris = load_iris()
        X, y = iris.data, iris.target
        clf = MockClassifier()
        fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
        a = cross_val_score(clf, X, y, fit_params=fit_params)
        assert_array_equal(a, np.ones(3))
    
    
    def test_learning_curve():
        n_samples = 30
        n_splits = 3
        X, y = make_classification(n_samples=n_samples, n_features=1,
                                   n_informative=1, n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(n_samples * ((n_splits - 1) / n_splits))
        for shuffle_train in [False, True]:
            with warnings.catch_warnings(record=True) as w:
                train_sizes, train_scores, test_scores = learning_curve(
                    estimator, X, y, cv=KFold(n_splits=n_splits),
                    train_sizes=np.linspace(0.1, 1.0, 10),
                    shuffle=shuffle_train)
            if len(w) > 0:
                raise RuntimeError("Unexpected warning: %r" % w[0].message)
            assert_equal(train_scores.shape, (10, 3))
            assert_equal(test_scores.shape, (10, 3))
            assert_array_equal(train_sizes, np.linspace(2, 20, 10))
            assert_array_almost_equal(train_scores.mean(axis=1),
                                      np.linspace(1.9, 1.0, 10))
            assert_array_almost_equal(test_scores.mean(axis=1),
                                      np.linspace(0.1, 1.0, 10))
    
            # Test a custom cv splitter that can iterate only once
            with warnings.catch_warnings(record=True) as w:
                train_sizes2, train_scores2, test_scores2 = learning_curve(
                    estimator, X, y,
                    cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
                    train_sizes=np.linspace(0.1, 1.0, 10),
                    shuffle=shuffle_train)
            if len(w) > 0:
                raise RuntimeError("Unexpected warning: %r" % w[0].message)
            assert_array_almost_equal(train_scores2, train_scores)
            assert_array_almost_equal(test_scores2, test_scores)
    
    
    def test_learning_curve_unsupervised():
        X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(20)
        train_sizes, train_scores, test_scores = learning_curve(
            estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10))
        assert_array_equal(train_sizes, np.linspace(2, 20, 10))
        assert_array_almost_equal(train_scores.mean(axis=1),
                                  np.linspace(1.9, 1.0, 10))
        assert_array_almost_equal(test_scores.mean(axis=1),
                                  np.linspace(0.1, 1.0, 10))
    
    
    def test_learning_curve_verbose():
        X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(20)
    
        old_stdout = sys.stdout
        sys.stdout = StringIO()
        try:
            train_sizes, train_scores, test_scores = \
                learning_curve(estimator, X, y, cv=3, verbose=1)
        finally:
            out = sys.stdout.getvalue()
            sys.stdout.close()
            sys.stdout = old_stdout
    
        assert("[learning_curve]" in out)
    
    
    def test_learning_curve_incremental_learning_not_possible():
        X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        # The mockup does not have partial_fit()
        estimator = MockImprovingEstimator(1)
        assert_raises(ValueError, learning_curve, estimator, X, y,
                      exploit_incremental_learning=True)
    
    
    def test_learning_curve_incremental_learning():
        X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockIncrementalImprovingEstimator(20)
        for shuffle_train in [False, True]:
            train_sizes, train_scores, test_scores = learning_curve(
                estimator, X, y, cv=3, exploit_incremental_learning=True,
                train_sizes=np.linspace(0.1, 1.0, 10), shuffle=shuffle_train)
            assert_array_equal(train_sizes, np.linspace(2, 20, 10))
            assert_array_almost_equal(train_scores.mean(axis=1),
                                      np.linspace(1.9, 1.0, 10))
            assert_array_almost_equal(test_scores.mean(axis=1),
                                      np.linspace(0.1, 1.0, 10))
    
    
    def test_learning_curve_incremental_learning_unsupervised():
        X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockIncrementalImprovingEstimator(20)
        train_sizes, train_scores, test_scores = learning_curve(
            estimator, X, y=None, cv=3, exploit_incremental_learning=True,
            train_sizes=np.linspace(0.1, 1.0, 10))
        assert_array_equal(train_sizes, np.linspace(2, 20, 10))
        assert_array_almost_equal(train_scores.mean(axis=1),
                                  np.linspace(1.9, 1.0, 10))
        assert_array_almost_equal(test_scores.mean(axis=1),
                                  np.linspace(0.1, 1.0, 10))
    
    
    def test_learning_curve_batch_and_incremental_learning_are_equal():
        X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        train_sizes = np.linspace(0.2, 1.0, 5)
        estimator = PassiveAggressiveClassifier(max_iter=1, tol=None,
                                                shuffle=False)
    
        train_sizes_inc, train_scores_inc, test_scores_inc = \
            learning_curve(
                estimator, X, y, train_sizes=train_sizes,
                cv=3, exploit_incremental_learning=True)
        train_sizes_batch, train_scores_batch, test_scores_batch = \
            learning_curve(
                estimator, X, y, cv=3, train_sizes=train_sizes,
                exploit_incremental_learning=False)
    
        assert_array_equal(train_sizes_inc, train_sizes_batch)
        assert_array_almost_equal(train_scores_inc.mean(axis=1),
                                  train_scores_batch.mean(axis=1))
        assert_array_almost_equal(test_scores_inc.mean(axis=1),
                                  test_scores_batch.mean(axis=1))
    
    
    def test_learning_curve_n_sample_range_out_of_bounds():
        X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(20)
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
                      train_sizes=[0, 1])
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
                      train_sizes=[0.0, 1.0])
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
                      train_sizes=[0.1, 1.1])
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
                      train_sizes=[0, 20])
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
                      train_sizes=[1, 21])
    
    
    def test_learning_curve_remove_duplicate_sample_sizes():
        X, y = make_classification(n_samples=3, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(2)
        train_sizes, _, _ = assert_warns(
            RuntimeWarning, learning_curve, estimator, X, y, cv=3,
            train_sizes=np.linspace(0.33, 1.0, 3))
        assert_array_equal(train_sizes, [1, 2])
    
    
    def test_learning_curve_with_boolean_indices():
        X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        estimator = MockImprovingEstimator(20)
        cv = KFold(n_splits=3)
        train_sizes, train_scores, test_scores = learning_curve(
            estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10))
        assert_array_equal(train_sizes, np.linspace(2, 20, 10))
        assert_array_almost_equal(train_scores.mean(axis=1),
                                  np.linspace(1.9, 1.0, 10))
        assert_array_almost_equal(test_scores.mean(axis=1),
                                  np.linspace(0.1, 1.0, 10))
    
    
    def test_learning_curve_with_shuffle():
        # Following test case was designed this way to verify the code
        # changes made in pull request: #7506.
        X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [11, 12], [13, 14], [15, 16],
                     [17, 18], [19, 20], [7, 8], [9, 10], [11, 12], [13, 14],
                     [15, 16], [17, 18]])
        y = np.array([1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 4])
        groups = np.array([1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4, 4])
        # Splits on these groups fail without shuffle as the first iteration
        # of the learning curve doesn't contain label 4 in the training set.
        estimator = PassiveAggressiveClassifier(max_iter=5, tol=None,
                                                shuffle=False)
    
        cv = GroupKFold(n_splits=2)
        train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve(
            estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
            groups=groups, shuffle=True, random_state=2)
        assert_array_almost_equal(train_scores_batch.mean(axis=1),
                                  np.array([0.75, 0.3, 0.36111111]))
        assert_array_almost_equal(test_scores_batch.mean(axis=1),
                                  np.array([0.36111111, 0.25, 0.25]))
        assert_raises(ValueError, learning_curve, estimator, X, y, cv=cv, n_jobs=1,
                      train_sizes=np.linspace(0.3, 1.0, 3), groups=groups)
    
        train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve(
            estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
            groups=groups, shuffle=True, random_state=2,
            exploit_incremental_learning=True)
        assert_array_almost_equal(train_scores_inc.mean(axis=1),
                                  train_scores_batch.mean(axis=1))
        assert_array_almost_equal(test_scores_inc.mean(axis=1),
                                  test_scores_batch.mean(axis=1))
    
    
    def test_validation_curve():
        X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
        param_range = np.linspace(0, 1, 10)
        with warnings.catch_warnings(record=True) as w:
            train_scores, test_scores = validation_curve(
                MockEstimatorWithParameter(), X, y, param_name="param",
                param_range=param_range, cv=2
            )
        if len(w) > 0:
            raise RuntimeError("Unexpected warning: %r" % w[0].message)
    
        assert_array_almost_equal(train_scores.mean(axis=1), param_range)
        assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
    
    
    def test_validation_curve_clone_estimator():
        X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
                                   n_redundant=0, n_classes=2,
                                   n_clusters_per_class=1, random_state=0)
    
        param_range = np.linspace(1, 0, 10)
        _, _ = validation_curve(
            MockEstimatorWithSingleFitCallAllowed(), X, y,
            param_name="param", param_range=param_range, cv=2
        )
    
    
    def test_validation_curve_cv_splits_consistency():
        n_samples = 100
        n_splits = 5
        X, y = make_classification(n_samples=100, random_state=0)
    
        scores1 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
                                   'C', [0.1, 0.1, 0.2, 0.2],
                                   cv=OneTimeSplitter(n_splits=n_splits,
                                                      n_samples=n_samples))
        # The OneTimeSplitter is a non-re-entrant cv splitter. Unless, the
        # `split` is called for each parameter, the following should produce
        # identical results for param setting 1 and param setting 2 as both have
        # the same C value.
        assert_array_almost_equal(*np.vsplit(np.hstack(scores1)[(0, 2, 1, 3), :],
                                             2))
    
        scores2 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
                                   'C', [0.1, 0.1, 0.2, 0.2],
                                   cv=KFold(n_splits=n_splits, shuffle=True))
    
        # For scores2, compare the 1st and 2nd parameter's scores
        # (Since the C value for 1st two param setting is 0.1, they must be
        # consistent unless the train test folds differ between the param settings)
        assert_array_almost_equal(*np.vsplit(np.hstack(scores2)[(0, 2, 1, 3), :],
                                             2))
    
        scores3 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
                                   'C', [0.1, 0.1, 0.2, 0.2],
                                   cv=KFold(n_splits=n_splits))
    
        # OneTimeSplitter is basically unshuffled KFold(n_splits=5). Sanity check.
        assert_array_almost_equal(np.array(scores3), np.array(scores1))
    
    
    def test_check_is_permutation():
        rng = np.random.RandomState(0)
        p = np.arange(100)
        rng.shuffle(p)
        assert_true(_check_is_permutation(p, 100))
        assert_false(_check_is_permutation(np.delete(p, 23), 100))
    
        p[0] = 23
        assert_false(_check_is_permutation(p, 100))
    
        # Check if the additional duplicate indices are caught
        assert_false(_check_is_permutation(np.hstack((p, 0)), 100))
    
    
    def test_cross_val_predict_sparse_prediction():
        # check that cross_val_predict gives same result for sparse and dense input
        X, y = make_multilabel_classification(n_classes=2, n_labels=1,
                                              allow_unlabeled=False,
                                              return_indicator=True,
                                              random_state=1)
        X_sparse = csr_matrix(X)
        y_sparse = csr_matrix(y)
        classif = OneVsRestClassifier(SVC(kernel='linear'))
        preds = cross_val_predict(classif, X, y, cv=10)
        preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10)
        preds_sparse = preds_sparse.toarray()
        assert_array_almost_equal(preds_sparse, preds)
    
    
    def check_cross_val_predict_with_method(est):
        iris = load_iris()
        X, y = iris.data, iris.target
        X, y = shuffle(X, y, random_state=0)
        classes = len(set(y))
    
        kfold = KFold()
    
        methods = ['decision_function', 'predict_proba', 'predict_log_proba']
        for method in methods:
            predictions = cross_val_predict(est, X, y, method=method)
            assert_equal(len(predictions), len(y))
    
            expected_predictions = np.zeros([len(y), classes])
            func = getattr(est, method)
    
            # Naive loop (should be same as cross_val_predict):
            for train, test in kfold.split(X, y):
                est.fit(X[train], y[train])
                expected_predictions[test] = func(X[test])
    
            predictions = cross_val_predict(est, X, y, method=method,
                                            cv=kfold)
            assert_array_almost_equal(expected_predictions, predictions)
    
            # Test alternative representations of y
            predictions_y1 = cross_val_predict(est, X, y + 1, method=method,
                                               cv=kfold)
            assert_array_equal(predictions, predictions_y1)
    
            predictions_y2 = cross_val_predict(est, X, y - 2, method=method,
                                               cv=kfold)
            assert_array_equal(predictions, predictions_y2)
    
            predictions_ystr = cross_val_predict(est, X, y.astype('str'),
                                                 method=method, cv=kfold)
            assert_array_equal(predictions, predictions_ystr)
    
    
    def test_cross_val_predict_with_method():
        check_cross_val_predict_with_method(LogisticRegression())
    
    
    def test_gridsearchcv_cross_val_predict_with_method():
        est = GridSearchCV(LogisticRegression(random_state=42),
                           {'C': [0.1, 1]},
                           cv=2)
        check_cross_val_predict_with_method(est)
    
    
    def get_expected_predictions(X, y, cv, classes, est, method):
    
        expected_predictions = np.zeros([len(y), classes])
        func = getattr(est, method)
    
        for train, test in cv.split(X, y):
            est.fit(X[train], y[train])
            expected_predictions_ = func(X[test])
            # To avoid 2 dimensional indexing
            exp_pred_test = np.zeros((len(test), classes))
            if method is 'decision_function' and len(est.classes_) == 2:
                exp_pred_test[:, est.classes_[-1]] = expected_predictions_
            else:
                exp_pred_test[:, est.classes_] = expected_predictions_
            expected_predictions[test] = exp_pred_test
    
        return expected_predictions
    
    
    def test_cross_val_predict_class_subset():
    
        X = np.arange(8).reshape(4, 2)
        y = np.array([0, 0, 1, 2])
        classes = 3
    
        kfold3 = KFold(n_splits=3)
        kfold4 = KFold(n_splits=4)
    
        le = LabelEncoder()
    
        methods = ['decision_function', 'predict_proba', 'predict_log_proba']
        for method in methods:
            est = LogisticRegression()
    
            # Test with n_splits=3
            predictions = cross_val_predict(est, X, y, method=method,
                                            cv=kfold3)
    
            # Runs a naive loop (should be same as cross_val_predict):
            expected_predictions = get_expected_predictions(X, y, kfold3, classes,
                                                            est, method)
            assert_array_almost_equal(expected_predictions, predictions)
    
            # Test with n_splits=4
            predictions = cross_val_predict(est, X, y, method=method,
                                            cv=kfold4)
            expected_predictions = get_expected_predictions(X, y, kfold4, classes,
                                                            est, method)
            assert_array_almost_equal(expected_predictions, predictions)
    
            # Testing unordered labels
            y = [1, 1, -4, 6]
            predictions = cross_val_predict(est, X, y, method=method,
                                            cv=kfold3)
            y = le.fit_transform(y)
            expected_predictions = get_expected_predictions(X, y, kfold3, classes,
                                                            est, method)
            assert_array_almost_equal(expected_predictions, predictions)
    
    
    def test_score_memmap():
        # Ensure a scalar score of memmap type is accepted
        iris = load_iris()
        X, y = iris.data, iris.target
        clf = MockClassifier()
        tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
        tf.write(b'Hello world!!!!!')
        tf.close()
        scores = np.memmap(tf.name, dtype=np.float64)
        score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
        try:
            cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
            # non-scalar should still fail
            assert_raises(ValueError, cross_val_score, clf, X, y,
                          scoring=lambda est, X, y: scores)
        finally:
            # Best effort to release the mmap file handles before deleting the
            # backing file under Windows
            scores, score = None, None
            for _ in range(3):
                try:
                    os.unlink(tf.name)
                    break
                except WindowsError:
                    sleep(1.)
    
    
    def test_permutation_test_score_pandas():
        # check permutation_test_score doesn't destroy pandas dataframe
        types = [(MockDataFrame, MockDataFrame)]
        try:
            from pandas import Series, DataFrame
            types.append((Series, DataFrame))
        except ImportError:
            pass
        for TargetType, InputFeatureType in types:
            # X dataframe, y series
            iris = load_iris()
            X, y = iris.data, iris.target
            X_df, y_ser = InputFeatureType(X), TargetType(y)
            check_df = lambda x: isinstance(x, InputFeatureType)
            check_series = lambda x: isinstance(x, TargetType)
            clf = CheckingClassifier(check_X=check_df, check_y=check_series)
            permutation_test_score(clf, X_df, y_ser)