Skip to content
Snippets Groups Projects
Select Git revision
  • 87f06b74ea2905d436888c32c571708e4b5788be
  • master default protected
  • 0.19.X
  • discrete
  • 0.18.X
  • ignore_lambda_to_diff_errors
  • 0.17.X
  • authors-update
  • 0.16.X
  • 0.15.X
  • 0.14.X
  • debian
  • 0.13.X
  • 0.12.X
  • 0.11.X
  • 0.10.X
  • 0.9.X
  • 0.6.X
  • 0.7.X
  • 0.8.X
  • 0.19.1
  • 0.19.0
  • 0.19b2
  • 0.19b1
  • 0.19-branching
  • 0.18.2
  • 0.18.1
  • 0.18
  • 0.18rc2
  • 0.18rc1
  • 0.18rc
  • 0.17.1-1
  • 0.17.1
  • debian/0.17.0-4
  • debian/0.17.0-3
  • debian/0.17.0-1
  • 0.17
  • debian/0.17.0_b1+git14-g4e6829c-1
  • debian/0.17.0_b1-1
  • 0.17b1
40 results

supervised_learning.rst

Blame
  • bench_glm.py 1.46 KiB
    """
    A comparison of different methods in GLM
    
    Data comes from a random square matrix.
    
    """
    from datetime import datetime
    import numpy as np
    from sklearn import linear_model
    from sklearn.utils.bench import total_seconds
    
    
    if __name__ == '__main__':
    
        import pylab as pl
    
        n_iter = 40
    
        time_ridge = np.empty(n_iter)
        time_ols = np.empty(n_iter)
        time_lasso = np.empty(n_iter)
    
        dimensions = 500 * np.arange(1, n_iter + 1)
    
        for i in range(n_iter):
    
            print('Iteration %s of %s' % (i, n_iter))
    
            n_samples, n_features = 10 * i + 3, 10 * i + 3
    
            X = np.random.randn(n_samples, n_features)
            Y = np.random.randn(n_samples)
    
            start = datetime.now()
            ridge = linear_model.Ridge(alpha=1.)
            ridge.fit(X, Y)
            time_ridge[i] = total_seconds(datetime.now() - start)
    
            start = datetime.now()
            ols = linear_model.LinearRegression()
            ols.fit(X, Y)
            time_ols[i] = total_seconds(datetime.now() - start)
    
            start = datetime.now()
            lasso = linear_model.LassoLars()
            lasso.fit(X, Y)
            time_lasso[i] = total_seconds(datetime.now() - start)
    
        pl.figure('scikit-learn GLM benchmark results')
        pl.xlabel('Dimensions')
        pl.ylabel('Time (s)')
        pl.plot(dimensions, time_ridge, color='r')
        pl.plot(dimensions, time_ols, color='g')
        pl.plot(dimensions, time_lasso, color='b')
    
        pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left')
        pl.axis('tight')
        pl.show()