Select Git revision
multiclass.py
-
Mikhail Korobov authored
[MRG + 3] OneVsRestClassifier: don't expose predict_proba and decision_function if base estimator doesn't support them (#7812) * OneVsRestClassifier: don't expose predict_proba and decision_function methods if they are not supported by base estimator. * TST use nose-style asserts * handle a case where classifier get predict_proba method only after .fit
Mikhail Korobov authored[MRG + 3] OneVsRestClassifier: don't expose predict_proba and decision_function if base estimator doesn't support them (#7812) * OneVsRestClassifier: don't expose predict_proba and decision_function methods if they are not supported by base estimator. * TST use nose-style asserts * handle a case where classifier get predict_proba method only after .fit
bench_plot_svd.py 2.57 KiB
"""Benchmarks of Singular Values Decomposition (Exact and Approximate)
The data is mostly low rank but is a fat infinite tail.
"""
import gc
from time import time
import numpy as np
from collections import defaultdict
from scipy.linalg import svd
from scikits.learn.utils.extmath import fast_svd
from scikits.learn.datasets.samples_generator import low_rank_fat_tail
def compute_bench(samples_range, features_range, q=3, rank=50):
it = 0
results = defaultdict(lambda: [])
max_it = len(samples_range) * len(features_range)
for n_samples in samples_range:
for n_features in features_range:
it += 1
print '===================='
print 'Iteration %03d of %03d' % (it, max_it)
print '===================='
X = low_rank_fat_tail(n_samples, n_features, effective_rank=rank,
tail_strength=0.2)
gc.collect()
print "benching scipy svd: "
tstart = time()
svd(X, full_matrices=False)
results['scipy svd'].append(time() - tstart)
gc.collect()
print "benching scikit-learn fast_svd: q=0"
tstart = time()
fast_svd(X, rank, q=0)
results['scikit-learn fast_svd (q=0)'].append(time() - tstart)
gc.collect()
print "benching scikit-learn fast_svd: q=%d " % q
tstart = time()
fast_svd(X, rank, q=q)
results['scikit-learn fast_svd (q=%d)' % q].append(time() - tstart)
return results
if __name__ == '__main__':
from mpl_toolkits.mplot3d import axes3d # register the 3d projection
import matplotlib.pyplot as plt
samples_range = np.linspace(2, 1000, 4).astype(np.int)
features_range = np.linspace(2, 1000, 4).astype(np.int)
results = compute_bench(samples_range, features_range)
fig = plt.figure()
ax = fig.gca(projection='3d')
for c, (label, timings) in zip('rbg', sorted(results.iteritems())):
X, Y = np.meshgrid(samples_range, features_range)
Z = np.asarray(timings).reshape(samples_range.shape[0],
features_range.shape[0])
# plot the actual surface
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3,
color=c)
# dummy point plot to stick the legend to since surface plot do not
# support legends (yet?)
ax.plot([1], [1], [1], color=c, label=label)
ax.set_xlabel('n_samples')
ax.set_ylabel('n_features')
ax.set_zlabel('time (s)')
ax.legend()
plt.show()