Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • 0.19.X
  • discrete
  • 0.18.X
  • ignore_lambda_to_diff_errors
  • 0.17.X
  • authors-update
  • 0.16.X
  • 0.15.X
  • 0.14.X
  • debian
  • 0.13.X
  • 0.12.X
  • 0.11.X
  • 0.10.X
  • 0.9.X
  • 0.6.X
  • 0.7.X
  • 0.8.X
  • 0.19.1
  • 0.19.0
  • 0.19b2
  • 0.19b1
  • 0.19-branching
  • 0.18.2
  • 0.18.1
  • 0.18
  • 0.18rc2
  • 0.18rc1
  • 0.18rc
  • 0.17.1-1
  • 0.17.1
  • debian/0.17.0-4
  • debian/0.17.0-3
  • debian/0.17.0-1
  • 0.17
  • debian/0.17.0_b1+git14-g4e6829c-1
  • debian/0.17.0_b1-1
  • 0.17b1
39 results

test_validation.py

  • Raghav RV's avatar
    3f8743f4
    Main Commits - Major · 3f8743f4
    Raghav RV authored
    --------------------
    
    * ENH Reogranize classes/fn from grid_search into search.py
    * ENH Reogranize classes/fn from cross_validation into split.py
    * ENH Reogranize cls/fn from cross_validation/learning_curve into validate.py
    
    * MAINT Merge _check_cv into check_cv inside the model_selection module
    * MAINT Update all the imports to point to the model_selection module
    * FIX use iter_cv to iterate throught the new style/old style cv objs
    * TST Add tests for the new model_selection members
    * ENH Wrap the old-style cv obj/iterables instead of using iter_cv
    
    * ENH Use scipy's binomial coefficient function comb for calucation of nCk
    * ENH Few enhancements to the split module
    * ENH Improve check_cv input validation and docstring
    * MAINT _get_test_folds(X, y, labels) --> _get_test_folds(labels)
    * TST if 1d arrays for X introduce any errors
    * ENH use 1d X arrays for all tests;
    * ENH X_10 --> X (global var)
    
    Minor
    -----
    
    * ENH _PartitionIterator --> _BaseCrossValidator;
    * ENH CVIterator --> CVIterableWrapper
    * TST Import the old SKF locally
    * FIX/TST Clean up the split module's tests.
    * DOC Improve documentation of the cv parameter
    * COSMIT consistently hyphenate cross-validation/cross-validator
    * TST Calculate n_samples from X
    * COSMIT Use separate lines for each import.
    * COSMIT cross_validation_generator --> cross_validator
    
    Commits merged manually
    -----------------------
    
    * FIX Document the random_state attribute in RandomSearchCV
    * MAINT Use check_cv instead of _check_cv
    * ENH refactor OVO decision function, use it in SVC for sklearn-like
      decision_function shape
    * FIX avoid memory cost when sampling from large parameter grids
    
    ENH Major to Minor incremental enhancements to the model_selection
    
    Squashed commit messages - (For reference)
    
    Major
    -----
    
    * ENH p --> n_labels
    * FIX *ShuffleSplit: all float/invalid type errors at init and int error at split
    * FIX make PredefinedSplit accept test_folds in constructor; Cleanup docstrings
    * ENH+TST KFold: make rng to be generated at every split call for reproducibility
    * FIX/MAINT KFold: make shuffle a public attr
    * FIX Make CVIterableWrapper private.
    * FIX reuse len_cv instead of recalculating it
    * FIX Prevent adding *SearchCV estimators from the old grid_search module
    * re-FIX In all_estimators: the sorting to use only the 1st item (name)
        To avoid collision between the old and the new GridSearch classes.
    * FIX test_validate.py: Use 2D X (1D X is being detected as a single sample)
    * MAINT validate.py --> validation.py
    * MAINT make the submodules private
    * MAINT Support old cv/gs/lc until 0.19
    * FIX/MAINT n_splits --> get_n_splits
    * FIX/TST test_logistic.py/test_ovr_multinomial_iris:
        pass predefined folds as an iterable
    * MAINT expose BaseCrossValidator
    * Update the model_selection module with changes from master
      - From #5161
      -  - MAINT remove redundant p variable
      -  - Add check for sparse prediction in cross_val_predict
      - From #5201 - DOC improve random_state param doc
      - From #5190 - LabelKFold and test
      - From #4583 - LabelShuffleSplit and tests
      - From #5300 - shuffle the `labels` not the `indxs` in LabelKFold + tests
      - From #5378 - Make the GridSearchCV docs more accurate.
      - From #5458 - Remove shuffle from LabelKFold
      - From #5466(#4270) - Gaussian Process by Jan Metzen
      - From #4826 - Move custom error / warnings into sklearn.exception
    
    Minor
    -----
    
    * ENH Make the KFold shuffling test stronger
    * FIX/DOC Use the higher level model_selection module as ref
    * DOC in check_cv "y : array-like, optional"
    * DOC a supervised learning problem --> supervised learning problems
    * DOC cross-validators --> cross-validation strategies
    * DOC Correct Olivier Grisel's name ;)
    * MINOR/FIX cv_indices --> kfold
    * FIX/DOC Align the 'See also' section of the new KFold, LeaveOneOut
    * TST/FIX imports on separate lines
    * FIX use __class__ instead of classmethod
    * TST/FIX import directly from model_selection
    * COSMIT Relocate the random_state documentation
    * COSMIT remove pass
    * MAINT Remove deprecation warnings from old tests
    * FIX correct import at test_split
    * FIX/MAINT Move P_sparse, X, y defns to top; rm unused W_sparse, X_sparse
    * FIX random state to avoid doctest failure
    * TST n_splits and split wrapping of _CVIterableWrapper
    * FIX/MAINT Use multilabel indicator matrix directly
    * TST/DOC clarify why we conflate classes 0 and 1
    * DOC add comment that this was taken from BaseEstimator
    * FIX use of labels is not needed in stratified k fold
    * Fix cross_validation reference
    * Fix the labels param doc
    
    FIX/DOC/MAINT Addressing the review comments by Arnaud and Andy
    
    COSMIT Sort the members alphabetically
    COSMIT len_cv --> n_splits
    COSMIT Merge 2 if; FIX Use kwargs
    DOC Add my name to the authors :D
    DOC make labels parameter consistent
    FIX Remove hack for boolean indices; + COSMIT idx --> indices; DOC Add Returns
    COSMIT preds --> predictions
    DOC Add Returns and neatly arrange X, y, labels
    FIX idx(s)/ind(s)--> indice(s)
    COSMIT Merge if and else to elif
    COSMIT n --> n_samples
    COSMIT Use bincount only once
    COSMIT cls --> class_i / class_i (ith class indices) -->
    perm_indices_class_i
    
    FIX/ENH/TST Addressing the final reviews
    
    COSMIT c --> count
    FIX/TST make check_cv raise ValueError for string cv value
    TST nested cv (gs inside cross_val_score) works for diff cvs
    FIX/ENH Raise ValueError when labels is None for label based cvs;
    TST if labels is being passed correctly to the cv and that the
    ValueError is being propagated to the cross_val_score/predict and grid
    search
    FIX pass labels to cross_val_score
    FIX use make_classification
    DOC Add Returns; COSMIT Remove scaffolding
    TST add a test to check the _build_repr helper
    REVERT the old GS/RS should also be tested by the common tests.
    ENH Add a tuple of all/label based CVS
    FIX raise VE even at get_n_splits if labels is None
    FIX Fabian's comments
    PEP8
    3f8743f4
    History
    Main Commits - Major
    Raghav RV authored
    --------------------
    
    * ENH Reogranize classes/fn from grid_search into search.py
    * ENH Reogranize classes/fn from cross_validation into split.py
    * ENH Reogranize cls/fn from cross_validation/learning_curve into validate.py
    
    * MAINT Merge _check_cv into check_cv inside the model_selection module
    * MAINT Update all the imports to point to the model_selection module
    * FIX use iter_cv to iterate throught the new style/old style cv objs
    * TST Add tests for the new model_selection members
    * ENH Wrap the old-style cv obj/iterables instead of using iter_cv
    
    * ENH Use scipy's binomial coefficient function comb for calucation of nCk
    * ENH Few enhancements to the split module
    * ENH Improve check_cv input validation and docstring
    * MAINT _get_test_folds(X, y, labels) --> _get_test_folds(labels)
    * TST if 1d arrays for X introduce any errors
    * ENH use 1d X arrays for all tests;
    * ENH X_10 --> X (global var)
    
    Minor
    -----
    
    * ENH _PartitionIterator --> _BaseCrossValidator;
    * ENH CVIterator --> CVIterableWrapper
    * TST Import the old SKF locally
    * FIX/TST Clean up the split module's tests.
    * DOC Improve documentation of the cv parameter
    * COSMIT consistently hyphenate cross-validation/cross-validator
    * TST Calculate n_samples from X
    * COSMIT Use separate lines for each import.
    * COSMIT cross_validation_generator --> cross_validator
    
    Commits merged manually
    -----------------------
    
    * FIX Document the random_state attribute in RandomSearchCV
    * MAINT Use check_cv instead of _check_cv
    * ENH refactor OVO decision function, use it in SVC for sklearn-like
      decision_function shape
    * FIX avoid memory cost when sampling from large parameter grids
    
    ENH Major to Minor incremental enhancements to the model_selection
    
    Squashed commit messages - (For reference)
    
    Major
    -----
    
    * ENH p --> n_labels
    * FIX *ShuffleSplit: all float/invalid type errors at init and int error at split
    * FIX make PredefinedSplit accept test_folds in constructor; Cleanup docstrings
    * ENH+TST KFold: make rng to be generated at every split call for reproducibility
    * FIX/MAINT KFold: make shuffle a public attr
    * FIX Make CVIterableWrapper private.
    * FIX reuse len_cv instead of recalculating it
    * FIX Prevent adding *SearchCV estimators from the old grid_search module
    * re-FIX In all_estimators: the sorting to use only the 1st item (name)
        To avoid collision between the old and the new GridSearch classes.
    * FIX test_validate.py: Use 2D X (1D X is being detected as a single sample)
    * MAINT validate.py --> validation.py
    * MAINT make the submodules private
    * MAINT Support old cv/gs/lc until 0.19
    * FIX/MAINT n_splits --> get_n_splits
    * FIX/TST test_logistic.py/test_ovr_multinomial_iris:
        pass predefined folds as an iterable
    * MAINT expose BaseCrossValidator
    * Update the model_selection module with changes from master
      - From #5161
      -  - MAINT remove redundant p variable
      -  - Add check for sparse prediction in cross_val_predict
      - From #5201 - DOC improve random_state param doc
      - From #5190 - LabelKFold and test
      - From #4583 - LabelShuffleSplit and tests
      - From #5300 - shuffle the `labels` not the `indxs` in LabelKFold + tests
      - From #5378 - Make the GridSearchCV docs more accurate.
      - From #5458 - Remove shuffle from LabelKFold
      - From #5466(#4270) - Gaussian Process by Jan Metzen
      - From #4826 - Move custom error / warnings into sklearn.exception
    
    Minor
    -----
    
    * ENH Make the KFold shuffling test stronger
    * FIX/DOC Use the higher level model_selection module as ref
    * DOC in check_cv "y : array-like, optional"
    * DOC a supervised learning problem --> supervised learning problems
    * DOC cross-validators --> cross-validation strategies
    * DOC Correct Olivier Grisel's name ;)
    * MINOR/FIX cv_indices --> kfold
    * FIX/DOC Align the 'See also' section of the new KFold, LeaveOneOut
    * TST/FIX imports on separate lines
    * FIX use __class__ instead of classmethod
    * TST/FIX import directly from model_selection
    * COSMIT Relocate the random_state documentation
    * COSMIT remove pass
    * MAINT Remove deprecation warnings from old tests
    * FIX correct import at test_split
    * FIX/MAINT Move P_sparse, X, y defns to top; rm unused W_sparse, X_sparse
    * FIX random state to avoid doctest failure
    * TST n_splits and split wrapping of _CVIterableWrapper
    * FIX/MAINT Use multilabel indicator matrix directly
    * TST/DOC clarify why we conflate classes 0 and 1
    * DOC add comment that this was taken from BaseEstimator
    * FIX use of labels is not needed in stratified k fold
    * Fix cross_validation reference
    * Fix the labels param doc
    
    FIX/DOC/MAINT Addressing the review comments by Arnaud and Andy
    
    COSMIT Sort the members alphabetically
    COSMIT len_cv --> n_splits
    COSMIT Merge 2 if; FIX Use kwargs
    DOC Add my name to the authors :D
    DOC make labels parameter consistent
    FIX Remove hack for boolean indices; + COSMIT idx --> indices; DOC Add Returns
    COSMIT preds --> predictions
    DOC Add Returns and neatly arrange X, y, labels
    FIX idx(s)/ind(s)--> indice(s)
    COSMIT Merge if and else to elif
    COSMIT n --> n_samples
    COSMIT Use bincount only once
    COSMIT cls --> class_i / class_i (ith class indices) -->
    perm_indices_class_i
    
    FIX/ENH/TST Addressing the final reviews
    
    COSMIT c --> count
    FIX/TST make check_cv raise ValueError for string cv value
    TST nested cv (gs inside cross_val_score) works for diff cvs
    FIX/ENH Raise ValueError when labels is None for label based cvs;
    TST if labels is being passed correctly to the cv and that the
    ValueError is being propagated to the cross_val_score/predict and grid
    search
    FIX pass labels to cross_val_score
    FIX use make_classification
    DOC Add Returns; COSMIT Remove scaffolding
    TST add a test to check the _build_repr helper
    REVERT the old GS/RS should also be tested by the common tests.
    ENH Add a tuple of all/label based CVS
    FIX raise VE even at get_n_splits if labels is None
    FIX Fabian's comments
    PEP8