

Task 1: Relational Database Normalization and Implementation using MySQL

1. Data Normalization Process

1.1 Unnormalized Form (UNF)

The given dataset consists of repetitive and redundant data, stored in a single table without

clear separation of entities. The data structure is as follows:

Issues with UNF:

1. Multivalued attributes (Favorite Book, Favorite Activity, Neighbors)

2. Repeating groups (Neighbor 1 & 2, Neighbor1Email & Neighbor2Email)

3. Lack of primary key

1.2 First Normal Form (1NF)

To achieve 1NF, we eliminate multi-valued attributes:

A table is in 1NF if:

1. All columns contain atomic values (no multi-valued attributes).
2. Each row has a unique identifier (Primary Key).

Converting to 1NF:

● Break multi-valued attributes into separate rows
● Create separate tables for Address, Favorites, and Neighbor

Updated Tables in 1NF:

Person Table

PersonID Name Email DOB

1 Person 1 person1@email.com 3/15/1995

2 Person 2 person2@email.com 6/22/1993

Address Table

AddressID PersonID Street City Country Zip Code

1 1 12 Maple St London England E1 6AN

2 2 45 Oak Ave Manchester England M1 2WD

Favorites Table

FavouriteID PersonID Favorite Book Favorite Drink Favorite
Activity

1 1 A New Beginning Lemonade Outdoor
Running

2 2 The Road to Success Coffee Hiking

Neighbor Table

NeighborID PersonID NeighborName NeighborEmail

1 1 Neighbor A neighborA@email.com

2 1 Neighbor B neighborB@email.com

3 2 Neighbor C neighborC@email.com

4 2 Neighbor D neighborD@email.com

1.3 Second Normal Form (2NF)

To achieve 2NF, we must follow these rules:

A table is in 2NF if:

1. It is in 1NF.

2. No partial dependencies (Every non-key attribute depends on the whole primary key).

Converting to 2NF:

● Favorite Book, Favorite Drink, and Favorite Activity depend only on PersonID → No

change needed

● NeighborName and NeighborEmail depend only on PersonID → No change needed

● Street, City, Country, and Zip Code depend only on PersonID → No change needed

1.4 Third Normal Form (3NF)

To achieve 3NF, we remove transitive dependencies. The final table is created:

A table is in 3NF if:

1. It is in 2NF.

2. No transitive dependencies (non-key attributes should not depend on another non-key

attribute).

Converting to 3NF:

The current table structure has no transitive dependencies since all attributes depend directly

on the primary key.

Final Normalized Schema:

1. Person (PersonID, Name, Email, DOB)

2. Address (AddressID, PersonID, Street, City, Country, Zip Code)

3. Favorites (FavouriteID, PersonID, FavoriteBook, FavoriteDrink, FavoriteActivity)

4. Neighbor (NeighborID, PersonID, NeighborName, NeighborEmail)

2. ER Diagram

3. SQL Database Implementation

3.1 Creating the Database and Tables

3.2 Populating the Database

Data is populated & imported as a CSV format, so at first, we have changed file type from “xlsx”

to “csv”, and then we used MySQL scripts to import the data to each table in 3NF format.

This is a sample for (person, neighbor) tables import, you could check other codes from GitLab.

4. SQL Queries

4.1 Display Person's Name and Their Age in Years

4.2 Group Persons by Favourite Drink and Return Average Age

4.3 Display Average Age of People Who Like Hiking

4.4 Display Total People per City in Ascending Order

4.5 Display Name of Person(s) Whose Neighbour is 'Neighbour C'

5. Conclusion

This task demonstrated the process of database normalization to 3NF, ER modeling, SQL-based

database, population, and query execution. The relational model ensures data integrity.

Note: All of these implementations are found here: https://gitlab.uwe.ac.uk/y2-

youssef/advanced-db/-/tree/main/Task%201?ref_type=heads

https://gitlab.uwe.ac.uk/y2-youssef/advanced-db/-/tree/main/Task%201?ref_type=heads
https://gitlab.uwe.ac.uk/y2-youssef/advanced-db/-/tree/main/Task%201?ref_type=heads

