diff --git a/UFCFVQ-15-M Programming Task 1.ipynb b/UFCFVQ-15-M Programming Task 1.ipynb
index 7709324229324a10a6ff7dba8355f4a0b5729f26..e3d2c151008db46337be740d2fcbb1389dc074df 100644
--- a/UFCFVQ-15-M Programming Task 1.ipynb	
+++ b/UFCFVQ-15-M Programming Task 1.ipynb	
@@ -21,7 +21,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 27,
    "metadata": {},
    "outputs": [
     {
@@ -51,7 +51,7 @@
     "#Converting all string numbers to (integer)\n",
     "List = list(map(int, ConvertToList))\n",
     "#Now all numbers are integer niside the list e.g [148, 85, 183]\n",
-    "print(f'3) The items inside {type(List)} is {type(List[0])} | Now its a list of integer') "
+    "print(f'3) The items inside {type(List)} is {type(List[0])} | Now its a list of integer')"
    ]
   },
   {
@@ -63,31 +63,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "The mean of the list = 120.89453125\n"
+      "The mean of the datan list is 120.89453125\n"
      ]
     }
    ],
    "source": [
-    "#function to get the mean of a python list\n",
+    "#function to get the mean of a given python list\n",
     "def meanFinder(List):\n",
-    "    #assining the varivale to be global so it can be called any were else (as it has been called in FR1.7)\n",
+    "    #assining the variable to be global so it can be called any were else (as it has been called in FR1.7)\n",
     "    global ListMean\n",
-    "    \n",
+    "\n",
     "    #Find the mean of the list using the mathematical mean equation\n",
     "    ListMean = sum(List)/len(List)\n",
-    "    \n",
+    "\n",
     "    #Rturn The result\n",
     "    return ListMean\n",
     "\n",
     "#Calling the function and passing the >> List << argument to it \n",
-    "print(f'The mean of the list = {meanFinder(List)}')"
+    "print(f'The mean of the datan list is {meanFinder(List)}')"
    ]
   },
   {
@@ -107,19 +107,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Standard Devision of the list = 31.95179590820272\n"
+      "Standard Devision of the data list is 31.95179590820272\n"
      ]
     }
    ],
    "source": [
-    "#Function to find the standard deviation\n",
+    "#Function to find the standard deviation of a given python list\n",
     "def StdDevFinder(List): \n",
     "    #Find the variance among the list using its mathematical equation\n",
     "    # (Square each deviation from the mean & Calculate the variance)\n",
@@ -129,9 +129,8 @@
     "    #Rturn The result\n",
     "    return STD_DEV\n",
     "\n",
-    "\n",
     "#Calling the function and passing the >> List << argument to it \n",
-    "print(f'Standard Devision of the list = {StdDevFinder(List)}')"
+    "print(f'Standard Devision of the data list is {StdDevFinder(List)}')"
    ]
   },
   {
@@ -151,15 +150,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "The minimum number in the list = 0\n",
-      "The maximum in the list = 199\n"
+      "The minimum number in the data list is 0\n",
+      "The maximum in the data list is 199\n"
      ]
     }
    ],
@@ -177,9 +176,9 @@
     "\n",
     "    \n",
     "#Calling the functions and passing the >> List << argument to it \n",
-    "print(f'The minimum number in the list = {MinFinder(List)}')\n",
+    "print(f'The minimum number in the data list is {MinFinder(List)}')\n",
     "\n",
-    "print(f'The maximum in the list = {MaxFinder(List)}')\n"
+    "print(f'The maximum in the data list is {MaxFinder(List)}')\n"
    ]
   },
   {
@@ -200,7 +199,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -211,11 +210,11 @@
     "    ListNumber = len(List)\n",
     "    #Multiplying the length with the percentile number and dividing it by 100 (percentile equation) \n",
     "    Listpercentile = ListNumber * percentile / 100\n",
-    "    #If the number inside the (List Percentile) is integer, sort it and return it to (List Percentile list)\n",
+    "    #If the number inside the (ListPercentile) is integer, sort it and return it to (List Percentile list)\n",
     "    if Listpercentile.is_integer():\n",
     "        Listpercentile = sorted(List)[int(Listpercentile)]\n",
     "        return Listpercentile\n",
-    "    #else, remove it from (List Percentile list)\n",
+    "    #else, remove it from (ListPercentile list)\n",
     "    else:\n",
     "        Listpercentile = sorted(List)[int(round(Listpercentile)) -1]\n",
     "        return Listpercentile"
@@ -230,7 +229,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
@@ -265,7 +264,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
@@ -300,7 +299,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
@@ -335,7 +334,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 18,
    "metadata": {},
    "outputs": [
     {
@@ -391,15 +390,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 31,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[+] File Size >>> 3.638 (KB) | 3638 Bytes | 0.003638 (MB)\n",
-      "\n",
       "[+] The data type is <class 'list'> and the numbers inside is <class 'int'>\n",
       "\n",
       "[+] The file content as shown:\n",
@@ -416,19 +413,9 @@
     "ConvertToList  = list(FileName.strip().split())\n",
     "#Converting it to integer list\n",
     "List = list(map(int, ConvertToList))\n",
-    "\n",
-    "#Finding the file size inside the computer memory\n",
-    "def getSize(file):\n",
-    "    file.seek(0,2) #To count from the from the start of the file, and stop at the end.\n",
-    "    FileSize = file.tell() # To get file position\n",
-    "    #Print file size\n",
-    "    print(f'[+] File Size >>> {FileSize*0.001} (KB) | {FileSize} Bytes | {round(FileSize*0.000001,6)} (MB)\\n')\n",
     "    \n",
-    "FileName = open('task1.dat','r')\n",
-    "getSize(FileName)\n",
-    "\n",
     "print(f'[+] The data type is {type(List)} and the numbers inside is {type(List[0])}\\n')\n",
-    "print(f\"[+] The file content as shown:\\n\\n{List[0:]}\")\n"
+    "print(f\"[+] The file content as shown:\\n\\n{List[:]}\")\n"
    ]
   },
   {
@@ -451,40 +438,12 @@
    "metadata": {},
    "source": [
     "Following the given instruction in the appendix.A (output structure), this task has been created.\n",
-    "To be visualised better, the data output has been limited to 10 in each row."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "##### Explanation 1 Example for \"EachClmToList\"\n",
-    "\n",
-    "['A','B','C'],\n",
-    "\n",
-    "['1','2','3'],\n",
-    "\n",
-    "['4','5','6'],so on..\n",
-    "\n",
-    "Therfore EachClmToList[0] = ['A','1','4'..]\n",
-    "\n",
-    "##### Explanation 2\n",
-    "For loop is created to reach out to every single data inside 'AppendTolist' in the range of the data length,\n",
-    "(768) or (767) if we count from 0. To be able to do so, 2 for loop should be created as shown, one to count the number of\n",
-    "columns which is (9) or 8 if we count the zero, and the other to count the number of data in each row.\n",
-    "therefore it will start from [0][0].. [1][0].. [2][0] until it reaches [767][0] and switch to [0][1]..\n",
-    "and continue until it reaches the last data in the file which is at [767][8].\n",
-    "while so, the data (numbers) will be appended to a new list called 'EachClmToList'\n",
-    "\n",
-    "##### Explanation 3\n",
-    "A mathematical operation to create a sublist of (each data under each line for the header ) to achieve exploration 1, therefore\n",
-    "for every end of a line create a new list for the next line, and at the end, we will have a total of 9 lists that \n",
-    "achieved to carry each column of data into one list "
+    "To be visualised better, the data output has been limited to 13 in each row."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 60,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -492,7 +451,7 @@
     "AppendTolist  = []  #Creating an empty list to append all the CSV data inside it\n",
     "ColumnHeader  = []  #Creating an empty list to append the CSV Column Header (Name of each column)\n",
     "\n",
-    "#Refer to Explanation (1)\n",
+    "#Refer to Explanation (1) at the end\n",
     "EachClmToList = []  #Creating an empty list to append Each column-row (each data under each line for the header ) \n",
     "\n",
     "'''\n",
@@ -504,28 +463,31 @@
     "    AppendTolist.append(data) #Append (adding) the new data into the 'AppendTolist' list\n",
     "#print(AppendTolist[0:5])\n",
     "\n",
-    "#For loop to append only the first list  >> [0] <<  of the 'AppendTolist', which is the columns header to another list.\n",
+    "#For loop to append only the first list  >> [0] <<  of the 'AppendTolist', which is the header row (names).\n",
     "for subList in AppendTolist[0]: \n",
     "    ColumnHeader.append(subList) #append to another list.    \n",
-    "#Removing the appended it from the main list 'AppendTolist'\n",
+    "#Removing the names row from the main list 'AppendTolist'\n",
     "AppendTolist.remove(AppendTolist[0])\n",
     "\n",
-    "#Refer to Explanation (2) \n",
+    "#Refer to Explanation (2) at the end\n",
     "for clmLen in range(len(ColumnHeader)): #9 aka 8 as it starts from 0\n",
     "    #print(ColumnHeader)\n",
     "    for RowLen in range(len(AppendTolist)):#768 aka 767 as it satrts from 0 \n",
-    "       #print(AppendTolist[767][8])\n",
+    "        #print(AppendTolist[RowLen][clmLen])\n",
     "        EachClmToList.append(AppendTolist[RowLen][clmLen]) \n",
     "#print(EachClmToList)\n",
     "\n",
     "#to avoid python errors, a new variable is created called 'numberOfDataInEach' that carries row length in each line.\n",
     "numberOfDataInEach = len(AppendTolist)\n",
     "\n",
-    "#Refer to Explanation (3)\n",
+    "#Refer to Explanation (3) at the end\n",
     "EachClmToList = [EachClmToList[x:x+numberOfDataInEach] for x in range(0, len(EachClmToList), numberOfDataInEach)]\n",
     "\n",
     "\n",
-    "#As per as requested the data is stored in the memory and can be called later for analyzing"
+    "#As per as requested the data is stored in the memory and can be called later for analyzing\n",
+    "\n",
+    "#but for proven of successful output, the data can be printed out by uncommenting the next line\n",
+    "#print(ColumnHeader,EachClmToList[:][:])"
    ]
   },
   {
@@ -545,33 +507,33 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 71,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\"Pregnancies\" : [6.0, 1.0, 8.0, 1.0, 0.0, 5.0, 3.0, 10.0, 2.0, 8.0]\n",
-      "\"Glucose\" : [148.0, 85.0, 183.0, 89.0, 137.0, 116.0, 78.0, 115.0, 197.0, 125.0]\n",
-      "\"BloodPressure\" : [72.0, 66.0, 64.0, 66.0, 40.0, 74.0, 50.0, 0.0, 70.0, 96.0]\n",
-      "\"SkinThickness\" : [35.0, 29.0, 0.0, 23.0, 35.0, 0.0, 32.0, 0.0, 45.0, 0.0]\n",
-      "\"Insulin\" : [0.0, 0.0, 0.0, 94.0, 168.0, 0.0, 88.0, 0.0, 543.0, 0.0]\n",
-      "\"BMI\" : [33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5, 0.0]\n",
-      "\"DiabetesPedigreeFunction\" : [0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.134, 0.158, 0.232]\n",
-      "\"Age\" : [50.0, 31.0, 32.0, 21.0, 33.0, 30.0, 26.0, 29.0, 53.0, 54.0]\n",
-      "\"Outcome\" : [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0]\n"
+      "\"Pregnancies\" : [6.0, 1.0, 8.0, 1.0, 0.0, 5.0, 3.0, 10.0, 2.0, 8.0, 4.0, 10.0, 10.0]\n",
+      "\"Glucose\" : [148.0, 85.0, 183.0, 89.0, 137.0, 116.0, 78.0, 115.0, 197.0, 125.0, 110.0, 168.0, 139.0]\n",
+      "\"BloodPressure\" : [72.0, 66.0, 64.0, 66.0, 40.0, 74.0, 50.0, 0.0, 70.0, 96.0, 92.0, 74.0, 80.0]\n",
+      "\"SkinThickness\" : [35.0, 29.0, 0.0, 23.0, 35.0, 0.0, 32.0, 0.0, 45.0, 0.0, 0.0, 0.0, 0.0]\n",
+      "\"Insulin\" : [0.0, 0.0, 0.0, 94.0, 168.0, 0.0, 88.0, 0.0, 543.0, 0.0, 0.0, 0.0, 0.0]\n",
+      "\"BMI\" : [33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5, 0.0, 37.6, 38.0, 27.1]\n",
+      "\"DiabetesPedigreeFunction\" : [0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.134, 0.158, 0.232, 0.191, 0.537, 1.441]\n",
+      "\"Age\" : [50.0, 31.0, 32.0, 21.0, 33.0, 30.0, 26.0, 29.0, 53.0, 54.0, 30.0, 34.0, 57.0]\n",
+      "\"Outcome\" : [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0]\n"
      ]
     }
    ],
    "source": [
     "#Creating function to construct the data structure and to call it after. \n",
-    "def dataStrcuture():\n",
+    "def DataDemonstration():\n",
     "    for x in range(len(ColumnHeader)):\n",
-    "        print(f'\"{ColumnHeader[x]}\" : {list(map(float,EachClmToList[x][:10]))}')  #numbers has been converted to float\n",
-    "    #Only 10 data have been printed to better visualize the result, for the whole result remove [:10], [:] or none\n",
-    "    #list(map(float,EachClmToList[x][:10]))\n",
-    "dataStrcuture()"
+    "        print(f'\"{ColumnHeader[x]}\" : {list(map(float,EachClmToList[x][:13]))}')  #numbers has been converted to float\n",
+    "    #Only 13 data have been printed to better visualize the result, for the whole result remove [:13], which will be\n",
+    "    #list(map(float,EachClmToList[x]))\n",
+    "DataDemonstration()"
    ]
   },
   {
@@ -591,7 +553,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 91,
+   "execution_count": 87,
    "metadata": {},
    "outputs": [
     {
@@ -614,9 +576,10 @@
    ],
    "source": [
     "print('\"Stats\"   : [\"Mean\",\"Stdev\", \"Min\", Max\",\"25%\",\"50%\",\"75%\"]\\n')\n",
-    "#Calling the file \n",
-    "def dataStrcuture():\n",
-    "    global data\n",
+    "\n",
+    "#function for Data Statistical\n",
+    "def DataStatistical():\n",
+    "\n",
     "    #Creating an empty list to append Each column-row (each data under each line for the header ) \n",
     "    ConvertdeToFloat = []\n",
     "\n",
@@ -624,10 +587,8 @@
     "    for x in range(len(ColumnHeader)):\n",
     "        EachClmInListToFloat = list(map(float,EachClmToList[x][:]))\n",
     "        ConvertdeToFloat.append(EachClmInListToFloat)\n",
-    "    \n",
-    "    \n",
-    "    #Creating variables that contains the required information to create the data structure\n",
-    "    #and calling function that has been saved in memory before. \n",
+    "\n",
+    "    #Creating variables that contains the required information to create the datas tatistical structure\n",
     "    \n",
     "    for x in range(len(ColumnHeader)):\n",
     "        data = [round(meanFinder(ConvertdeToFloat[x][:]),3),\n",
@@ -640,7 +601,7 @@
     "                        ]\n",
     "        print(f'\"{ColumnHeader[x]}\" : {data}')\n",
     "       \n",
-    "dataStrcuture()"
+    "DataStatistical()"
    ]
   },
   {
@@ -660,7 +621,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 94,
+   "execution_count": 76,
    "metadata": {},
    "outputs": [
     {
@@ -684,14 +645,16 @@
     }
    ],
    "source": [
-    "#Calling the file \n",
-    "def dataStrcuture():\n",
+    "#Function to print out a custom statistical table\n",
+    "def DataCustomStatistical():\n",
     "    \n",
+    "    #DiabetesPedigreeFunction name is changed to DiabPedFnc as it takes a lot of space to print it out.\n",
     "    newList = [element.replace('DiabetesPedigreeFunction', 'DiabPedFnc') for element in ColumnHeader]\n",
     "    clmName =  [newList]\n",
+    "    \n",
     "    Status =  [\"Mean\",\"Stdev\", \"Min\", \"Max\",\"25%\",\"50%\",\"75%\"]\n",
     "    format_row = \"{: >13}  \" * (len(Status)+1)\n",
-    "    print(stars.rjust(121,'*'))\n",
+    "    print(stars.rjust(121,'*')) #Printing the stars\n",
     "    print(format_row.format(\"Status\", *Status))\n",
     "    print(stars.rjust(121,'*'))\n",
     "\n",
@@ -708,7 +671,7 @@
     "    #and calling function that has been saved in memory before.\n",
     "    \n",
     "    for x in range(len(ColumnHeader)):\n",
-    "\n",
+    "        \n",
     "        data = [[round(meanFinder(ConvertdeToFloat[x][:]),3),\n",
     "                round(StdDevFinder((ConvertdeToFloat[x][:])),3),\n",
     "                MaxFinder(ConvertdeToFloat[x][:]),\n",
@@ -720,13 +683,12 @@
     "\n",
     "        format_row = \"{:>15}\" * (len(Status) + 1)\n",
     "        \n",
-    "        for names, row in zip(clmName, data):\n",
+    "        for names, row in zip(clmName, data): #Printing the result out formatted to have an organized custom table\n",
     "            #print(team[x])\n",
     "            print(format_row.format(names[x], *row))\n",
     "\n",
-    "\n",
-    "dataStrcuture()\n",
     "stars = '*'\n",
+    "DataCustomStatistical()\n",
     "print(stars.rjust(121,'*'))"
    ]
   },
@@ -749,14 +711,47 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "in FR1.2 there is another formula for STd.Dev. we can use that also"
+    "### Explanation\n",
+    "##### Explanation 1 \n",
+    "Normal data structure is as shown \n",
+    "\n",
+    "['A','B','C'],\n",
+    "\n",
+    "['1','2','3'],\n",
+    "\n",
+    "['4','5','6'],so on..\n",
+    "\n",
+    "Therfore EachClmToList[0] = ['A','1','4'..]\n",
+    "\n",
+    "##### Explanation 2\n",
+    "For loop is created to reach out to every single data inside 'AppendTolist' in the range of the data length,\n",
+    "(768) or (767) if we count from 0. To be able to do so, 2 for loop should be created as shown, one to count the number of\n",
+    "columns which is (9) or 8 if we count the zero, and the other to count the number of data in each row.\n",
+    "therefore it will start from [0][0].. [1][0].. [2][0] until it reaches [767][0] and switch to [0][1]..\n",
+    "and continue until it reaches the last data in the file which is at [767][8].\n",
+    "while so, the data (numbers) will be appended to a new list called 'EachClmToList'\n",
+    "\n",
+    "##### Explanation 3\n",
+    "A mathematical operation to create a sublist of (each data under each line for the header ) to achieve exploration 1, therefore\n",
+    "for every end of a line create a new list for the next line, and at the end, we will have a total of 9 lists that \n",
+    "achieved to carry each column of data into one list \n",
+    "\n",
+    "\n",
+    "#### From task 1.1 to 1.7\n",
+    "\n",
+    "Overall the qustions can be solved using mathmatical quations using pre-build function in python\n",
+    "\n",
+    "#### For task 1.9 and along\n",
+    "\n",
+    "\n",
+    "\n",
+    "### Strength \n",
+    "### Weaknesses\n",
+    "### Improvement Points \n",
+    "### Alternative\n",
+    "\n"
    ]
   },
-  {
-   "cell_type": "raw",
-   "metadata": {},
-   "source": []
-  },
   {
    "cell_type": "markdown",
    "metadata": {},