From 2aaec4790013e4b8d1eecf62333bb3d6900c8301 Mon Sep 17 00:00:00 2001
From: "Shekwoyeyilo2.gado@live.uwe.ac.uk" <sarah.y.gado@gmail.com>
Date: Thu, 13 Mar 2025 08:58:06 +0000
Subject: [PATCH] Randomized grids results

---
 models.ipynb | 47 ++++++++++++++++++++++++-----------------------
 1 file changed, 24 insertions(+), 23 deletions(-)

diff --git a/models.ipynb b/models.ipynb
index 55980ec..1387698 100644
--- a/models.ipynb
+++ b/models.ipynb
@@ -867,7 +867,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 19,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -904,30 +904,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 21,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Running RandomizedSearchCV for DecisionTree...\n",
-      "Best parameters for DecisionTree: {'criterion': 'entropy', 'max_depth': 10, 'min_samples_leaf': 4, 'min_samples_split': 2}\n",
-      "\n",
-      "Running RandomizedSearchCV for RandomForest...\n",
-      "Best parameters for RandomForest: {'criterion': 'gini', 'max_depth': 50, 'min_samples_leaf': 2, 'min_samples_split': 8, 'n_estimators': 102}\n",
-      "\n",
-      "Running RandomizedSearchCV for svc...\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
-    "for name, model in models.items():\n",
-    "    #print(name)\n",
-    "    print(f\"Running RandomizedSearchCV for {name}...\")\n",
-    "    random_search = RandomizedSearchCV(model, param_distributions=param_grids[name], cv =kf, n_iter =100, random_state=42, n_jobs=-1)\n",
-    "    random_search.fit(X_train_scaled, y_train)\n",
-    "    print(f\"Best parameters for {name}: {random_search.best_params_}\\n\")\n"
+    "# for name, model in models.items():\n",
+    "#     #print(name)\n",
+    "#     print(f\"Running RandomizedSearchCV for {name}...\")\n",
+    "#     random_search = RandomizedSearchCV(model, param_distributions=param_grids[name], cv =kf, n_iter =100, random_state=42, n_jobs=-1)\n",
+    "#     random_search.fit(X_train_scaled, y_train)\n",
+    "#     print(f\"Best parameters for {name}: {random_search.best_params_}\\n\")\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "search results: \n",
+    "search results: Running RandomizedSearchCV for DecisionTree...\n",
+    "Best parameters for DecisionTree: {'criterion': 'entropy', 'max_depth': 10, 'min_samples_leaf': 4, 'min_samples_split': 2}\n",
+    "\n",
+    "Running RandomizedSearchCV for RandomForest...\n",
+    "Best parameters for RandomForest: {'criterion': 'gini', 'max_depth': 50, 'min_samples_leaf': 2, 'min_samples_split': 8, 'n_estimators': 102}\n",
+    "\n",
+    "Running RandomizedSearchCV for svc...\n",
+    "Best parameters for svc: {'kernel': 'rbf', 'gamma': 'auto', 'C': 10}"
    ]
   }
  ],
-- 
GitLab