SeS Worksheet 4 08/02/22

Title: Serial data communication

Author: Craig Duffy 9/9/14, 11/01/18, 29/10/18, 08/02/22, 22/02/22, 23/1/23
Module: Mobile and Embedded Devices, Secure Embedded Systems
Awards: BSc CSI, BSc Forensic Computing, Computer Security.
Prerequisites: Basic computer architecture and some C

Having 1 bit input and output won't get us very far so we need to look a bit further afield to get
something more useful. Firstly, we will look at basic serial communications.

Ye Olde RS-232

In computing terms basic serial, or RS-232 comms is pretty ancient — the original standard dates back
to 1969! At one time it was the main source of connection between a computer, Data Terminal
Equipment (DTE) in data communication jargon, and the outside world, Data Circuit- terminating
Equipment (DCE) in the jargon. But now serial ports no longer come as standard. But this doesn't
mean that RS-232 isn't worth studying. On embedded systems it is still the main way of connecting
to a system, and on many devices, although it is often obscured, or even hidden, on the final products,
it is heavily used in development. A large amount of 'technical' equipment, medical devices,
industrial equipment, networking gear and so on all use serial ports as their main means of
communication. Also, serial communication is still widely used e.g. USB and FireWire. So studying
a serial protocol such as RS-232 will help you understand these technologies too.

RS-232 does have its limitations, and this is part of the reason for its reduced usage. RS-232 data
rates are relatively slow, the connectors are large and it is difficult to have multiple end points.
However as a well understood, simple and reliable form of communication RS-232 still has a place
in a computer engineers' tool kit.

he ARM Cortex M3 series come with a maximum of 5 serial devices. These devices are known as
USART. USART stands for Universal Synchronous/Asynchronous Receiver Transmitter. This
means that these ports can communicate with other devices with serial data in a synchronised mode
(shared clock and data) or unsynchronised (shared data only). The Olimex board has 5 USARTSs and
these can be used to support such devices as serial ports/RS-232, infrared links IrDA, and modems.

Computer Computer
D ™D
Pin 3 Pin 3
DTE >< DTE
Pin 2} #{FPin 2
RD RD

The most basic serial communication link

The above diagram is for the UART configuration, meaning that the 2 computers only share data
and don't share a common clock signal or have any other means for signalling their data
transmissions. In order to work UARTs must send data in a standardised format thus allowing the
receiver to disentangle the data and extract the required timing information from the data frame.

1of 14

SeS Worksheet 4 08/02/22
1 |
| T
Start bit Data bits Parity bit Stop bits

Serial data frame format.

The start bit allows the receiver to synchronise with the transmitter, however this requires the sender
and receiver to agree on a transmission rate, normally called a baud rate. The data is the data being
sent, so this could be ASCII characters or binary data for example. The parity bit is used for a simple
low level error detection mechanism. The stops bit(s) are for further bit synchronisation, to allow the
receiver to tell the difference between the end of one message and the start of the next.

USARTS on the STM32

The STM32 has been designed to support 5 USARTSs although individual board designs may
implement fewer devices. The diagram below shows the architecture of our device, the STM32F107.

Cortex-M3

|Code

<

DCode

System

<

P

\ > FUTF [~._—, = Flash
. | SRAM
=] 1-
= Reset & clock
9 control (RCC)
] ‘F!'Eiji

AHE system bus | Bridge 2

.'| APB2 4 L?F'B‘I

DMaz

& A

g Bridge 1
O W, /
W/ lI.‘,I
ADCH GRIOC | DA SPIaN2S
b F ADC2 GPIOD [[PWR SPl2/M125
— | DIMA request | USART1 GPIOE | |[BKP IWDG
2P EXTI| [CAN1 WWDG
TIMA AFID | |CANZ ATC
GPICA [2C2 TIM7|
<:—_ GPIOB 2G4 TIME;
UARTS TIM5
UaAT4 T4
2 USART3 TIMg
o USaRTZ2 TIMZ
DOMA request

\/
| Ethernet MAC K
| useotars K:

ai15810

SeS Worksheet 4 08/02/22

The USART devices are, like all Cortex M3 peripherals, in a fixed memory location. The USART
locations are given below in a table.

Boundary address Peripheral Bus
0x4001 3800 - 0x4001 3BFF USART 1 APB2
0x4000 4400 - 0x4000 47FF USART 2 APB1
0x4000 4800 - 0x4000 4BFF USART 3 APB1
0x4000 4CO00 - 0x4000 4FFF USART 4 APB1
0x4000 5000 - 0x4000 53FF USART 5 APB1

USART Devices, their addresses and Bus

Like other devices, such as the GP10O described in an earlier worksheet, the USART has a number of
registers and all the devices have the same registers at similar offsets from the base addresses given
above. These features make it easier for the software developer to create reasonably portable software
fairly quickly. The registers are:

Name Label . Offset | RIW Reset
Status register USART_SR | 0x00 | R 0x00C0
Data register USART DR | 0x04 | RW Undefined
Baud rate register USART_BRR | 0x08 | W 0x0000
Control register 1 USART_CR1 | 0x0C | W 0x0000
Control register 2 USART_CR2 | 0x10 | W 0x0000
Control register 3 USART_CR3 | 0x14 | W 0x0000
Guard time z_ind prescaler | USART_GTPR 0x18 RW 0x0000
register
USART registers and offsets.

Some of the names are fairly self-explanatory — so the status register tells us the status of the last
transmission or reception, and it is clear why that is effectively a read only register. The data register
is in effect 2 registers — if it is written to it is the transmit register, the data written is sent out. If it is
read from it is the receive register, reflecting the data that has been sent to the device. The baud rate
register controls the rate at which the data is sent and received. These are in fixed gradations of bps
(Bit Per Second) — 9600, 19200, etc —which have been agreed by various international, governmental
and industrial bodies to allow equipment to be able to send and receive data sensibly. The control
registers allow the programmer to specify many features of the devices. As the USART can be used
for a number of purposes, as an infra-red (IrDa) device, or as a Smart Card, there are many settings,
most of which we won't need. Also, the peripherals can work in several modes, as interrupt driven
devices or using DMA (direct memory access) for example. At the moment we will be using the

3o0f 14

SeS Worksheet 4 08/02/22

device in its simplest form, as a simple polled UART so we will need to do a minimal amount of set
up.

However, we will need to look at the status and control registers in some detail.

The Status Register

)| 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[Resarvad
15 14 13 12 11 10 0 8 7 1 5 4 3 2 1 0

CTS LBD TXE TC RXNE | IDLE ORE MNE FE PE

Resarved
rc_wi | rc_wi r rc_wi | rc_wi r r r r r

detected NE, and overrun ORE, IDLE allowing the USART to detect if the line changes from being
IDLE to busy and allows it to generate an interrupt. RXNE — stands for Receiver Not Empty — this
bit detects whether data has been received (1) or not (0). The TC bit is for frame transmissions, mean
Transmission Complete. TXE which is for single byte transmission meaning Transmit data register
Empty, tells us whether data has been transmitted (1) or not (0). The LND and CTS bits are to do
with LIN (Local Interconnect Network) status and hardware flow control signals, both of which we
won't have to deal with.

Control Register 1

The only control register we need concern ourselves with is the first one, as the other deal with lots
of flow control, LIN, DMA and other features we won't be using.

a 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

| Resarved |

13 14 13 12 11 10 9 g T G 5 4 3 2 1 0

UE M WAKE | PCE PS PEIE | TXEIE | TCIE |RXMEIE | IDLEIE TE RE RWU SBK
Reserved

W w mw mw mw mw w w W mw ny nw mw mw

The main bits we need to know about are the UE (13), TE (3) and RE (2). These are USART Enable,
Transmit Enable and Receive Enable respectively. These bits allow the device to do its basic work.
The M (12), PCE (10) and PS (9) bits are to do with word length (8 or 9 bit plus Stop bits), Parity
Control Enable and Parity Select. The Parity bit is used as a very simple form of error detection. It
is a bit which tells the receiver the number of either odd or even 1s in the transmission. So if parity
is set to even then the receiver would expect the transmitter to set the parity bit to O every time there
was a transmission of an even number of bits or to 1 when the number of 1s was odd. Obviously this
can only detect single bit changes in received data a two-bit change would be undetected. Generally
most error detection is done on larger blocks of data and at higher levels in protocols.

4 of 14

SeS Worksheet 4 08/02/22

Programming the USART

In order to program the USART we can use the ST peripheral library code
STM32F10x_StdPeriph_Lib_V3.5.0. These calls will program the above registers however we could
do it manually ourselves. As with the earlier peripherals we need to do a number of set up tasks
before we can do the actual work at hand. These tasks are a little bit more complicated than with the
switches and LEDs but not massively more so.

Firstly we need to have a couple of variables to hold the data structures for the ST libraries and then
we need to set up the clocks using the Reset and Clock Control (RCC).

USART_InitTypeDef USART _InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;

/* Enable GPIO clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_AFIO, ENABLE);

/* Enable USART?2 clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART?2, ENABLE);

/* Remap USART, as USART2 uses alternate pins */
GPIO_PinRemapConfig(GPI0_Remap_USART2,ENABLE);

The Clock setting code

From the previous architecture diagram, we can see that the USART clock is on peripheral bus 1 —
APB1, and the APB2 bus is set up as we are going to use the GP1O pins on GPIOD in their alternate
functions (AFIO), as these pins are being used for the receive (RX) and transmit (TX) lines.

/* Configure USART2 Tx pin */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; /*changed from 8 to 5 for USART 2 craig */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_Init(GPIOD, &GPIO_InitStructure);

/* Configure USART2 Rx pin */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; /* changed from 9 to 6 for USART 2 craig */
GPIO_InitStructure.GPI0_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOD, &GPIO_InitStructure);

/* Configure USART 8N1 */

USART _InitStructure.USART_BaudRate = mainCOM_PORT_BAUD_RATE;

USART _InitStructure.USART_WordLength = USART_WordLength_8b;

USART _InitStructure.USART_StopBits = USART_StopBits_1;

USART _InitStructure.USART _Parity = USART _Parity_No;

USART _InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART _InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;

USART _Init(USART2, &USART _InitStructure);

USART initialisation code

50f 14

SeS Worksheet 4 08/02/22

Finally, we need to call the function to actually commit the changes to the USART.

/* Enable USART */
USART_Cmd(USART2, ENABLE);

How do we know which pins to set up? Well the older version A used USART1, which was on
another internal bus — APB2, and the USART used different pins. If we look at the schematic
(STM32-P107-REV-B-SCH.pdf) from Olimex, the company that built the board we can see from that
which pins are being used. First looking at the section that deals with the RSR-232.

RS232

U3
ST3232BDR(SO16)

_||(32571 s
100nF e S
Sl YO ;
c26 4 v =

_"_100nF C2

51 co-
USART2 TX 11 14
TIN TiouT HE
USART? RTS — o [RSHVIRAECNN
USART2 RX 230R 4 13
USART2 CTs = RTOUT RIN 5=

— 91 R2OUT ROIN
BOOTO_E 26,
' l _—— —~ 1G~~ ~udd R

The RS232 section of the schematic

6 of 14

SeS Worksheet 4 08/02/22

We can see that the transmission lines are called USART2_TX and USART2_RX. If we then look
at the CPU schematic we can see what pins these are connected too. The bottom corner of the
schematic has only been shown as the whole thing is rather large.

PC12/UART5_TX/USART3_CK/SPI3_MOSI —PrTY
PCI3TAMPERRTC [——AMPER PC13
o B R . C141110pF
PC14/0SC32IN b oY
PC15/05C32_OUT NA R1A ?7768H7fr6pm4'—|
PDO/OSC_IN/CAN1_RX :2] PDO
PD1/0SC_OUT/CAN1_TX |3 EB;
PD2ITIMS ETRUARTS RX b, TJSARTZ CTS , X oma USART2 CTS
PDIUSART2 CTS b5 USART2 RTS . X ona USART2 RTS
PDAUSARTZRTS bg USART2 TX__ o X USART2 TX
P[}:r_:l_JbARTIQ_TX 7 USART2 RX N XPD5 USART2 RX
PDOLUSART2 RX gg™JSB VBUSON ~ v PDB
PD8/USART3 T>I<D-'[E}?|:JE}-?|TTF<2>EC§~ o SRS X . gpos SSARTE
PDO/USART3 RXETH MIRX DOPo e —
PD10/USART3_CK/ETH_MII_RX_D1 g PD10
PD11/USART3_CTS/ETH_MI_RX_D2 5 PD11
PD12/TIM4_CH1/USART3_RTSEETH_MI_RX_D¥5—ETH RXER EB%
PD13/TIM4_CH2 |
PD14/TIM4_CH3 .2] PHY_SOFT RST PD14
PD15TIMA_CH4 | PD15

STM32 Pin out

You will see that USART2_TX and USART2_RX are, respectively connected to PD5 and PD6,
hence these are the pins we need to reassign.

Once this has been completed the USART is ready to receive and transmit. All we need is some code
to do this. The transmit code is pretty simple,

7 of 14

SeS Worksheet 4 08/02/22

int __io_putchar(int c) {
/* Wait until ready to send */
while (USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET)
{
}

USART_SendData(USART?2, (u16) c);

return c;

USART __io_putchar routine

The routine is very basic — it simply polls the status register until the transmit enable flag is reset,
meaning that the USART is ready to transmit. This is of course quite dangerous as the code will loop
forever if the USART never becomes ready, at best it will waste a lot of CPU time waiting for the
USART. Then it just places the date into the transmit register, although the register is 32 bits only
the bottom 8 are sent. The routine returns the value that it sent.

Note on using serial ports.

If you are using VMware then you may have problems using the serial ports in 2q53. If the VMware
host is Windows then the driver may well not work correctly and you will get weird results.
Unfortunately using a USB to serial adapter works no better on windows as windows hides the device
from VMware! Therefore it is best to use the native Linux build, currently Ubuntu. This will handle
the serial port correctly and also the USB to serial connector. However our Linux set up is slightly
infected by contact with windows via Open Directory. Normally the administrator would set the user
to the group dialout or tty to allow them permissions to access the serial devices in /dev — normally
/dev/ttySS5 or /dev/ttyUSBO0. For some reason our administrator can’t do this. That means opening
ports can be tricky. The default has been set to /dev/ttyS5 — the default for our serial devices. If this
doesn’t work then typing in

% minicom -0S

Will put you in to the configuration menu — you can then select serial port set up and select the device
you want — ttyUSBO for example. Unfortunately, you have to do this every time you call minicom.
Alternatively, you can use command line flags to set up interaction, for examples

% minicom -0 -D /dev/ttyUSBO0 -b 9600 -8

This will call minicom with the device /dev/ttyUSBO running at 9600 baud with 8 data bits — the -0
turns off any modem control signal because we don’t want them. For full details of the flags look at
the minicom man page. To find out which serial devices your kernel is working with call the kernel
diagnostic messages (dmesg) and filter, using the grep command for tty devices;

%dmesg | grep tty

[0.000000] console [tty0] enabled

[1.009446] 00:06: ttySO at I/O 0x3f8 (irq = 4, base_baud = 115200) is a 16550A

[1.030892] 0000:00:16.3: ttyS4 at 1/0O 0xf140 (irqg = 17, base_baud = 115200) is a 16550A

8 of 14

SeS Worksheet 4 08/02/22

It is worth noting that some of the cheaper USB serial devices can be quite flaky at higher speeds, if
in doubt start off slowly and speed up.

In order to test this routine we will need to connect a serial cable from the PC's serial port to the serial
port on the Olimex board. This will require a male to female RS232 cable, of which there are some
in the lab.

The male end connects to the 9 pin connector on the Olimex board and the female end to the 9 pin
connector at the back of the PC. If you are using a USB to serial connector then see the appendix for
details on how to use that. Once the cables are connected up we need a terminal program on the
Linux host to receive the data. The program we will use is called minicom. If you type minicom -0
ttySO0 that should give you a connection to serial port 1 on your PC. You should see something like
the following screen.

craig@craig-HP-Compag-8200-EliteSFF-... x craig@craig-HP-Compaq-8200-Elite-SFF-... x craig@craig-HP-Compaq-8200-Elite-SFF-.

x craig@craigHP-Compaq-8200-Elite SFF-... x | craig@craigHP-Compag-8200-Elite SFF-... X

Welcome to minicom 2.6.1

OPTIONS: I18n

Compiled on May 1 2012, 10:55:27.
Port /dev/ttyse

Press CTRL-A Z for help on special keys

CTRL-A Z for help [115200 8N1 NOR | Minicom 2.6.1 | vT1e2 | 0ffline

9of 14

SeS Worksheet 4 08/02/22

craig@craig-HP-Compaq-8200-Elite-SFF-... X craig@craig-HP-Compaq-8200-Elite-SFF-... X craig@craig-HP-Compaq-8200-Elite-SFF-...

X craig@craig-HP-Compaq-8200-Elite-SFF-... X craig@craig-HP-Compaq-8200-Elite-SFF-...

Welcome to minicom 2.6.1

OPTIONS: I18n

Compiled on May 1 2012, 10:55:27.

Port /dev/ttyse

Press CTRL-A Z for help on special keys

hellohellohellohellohellohellohellohellchellohello
bye}

CTRL-A Z for help |115200 8N1 NOR | Minicom 2.6.1 | VTi62 | 0ffline

Program output.

Exercises.

1) Change the baud rate of the program to 9600 — see what happens with minicom. Then change
minicom to accept 9600 baud rate.

10 of 14

SeS Worksheet 4 08/02/22

How did we write the __io_putchar() routine and how do we write the __io_getchar() routine?
Well the first thing was to make it consistent with the standard C library — libc. To find out the
parameters and return values we could look in the manual for the call. We can do this by typing man
putchar at the Linux command line — the same can be achieved by typing man putchar into Google.
This will tell us the format and structure of the putchar library call — it tells us

int putchar(int c);

b”l.'l.tchar(c); is equivalent to putc(c,stdout).

So putchar returns an int value and takes an int parameter — we will find out what stdout
means later in worksheet 6. If we ask what the getchar routine is the we get

int getchar(void);
getchar() is equivalent to getc(stdin).

Again we will find out about stdin in worksheet 6. But we can see that getchar doesn’t take a
parameter and returns an integer.

Once we get to the internals of __io_putchar() then we see that this is using the ST Micro library code
—assuming that the port has been initialised, then we can poll the port with the code

While (USART_GetFlagStatus(USART2,USART_FLAG_TXE) == RESET)

The while loop just loop, possibly infinitely, waiting for the transmit flag to indicate that some data
is ready to be read. If it does appear then we can read it with

USART_SendData(USART2, (ul6) c);

The details of these functions can be found in the library files — so if you look in the file
stm32f10x_usart.c you will find the USART_SendData function and just after it there is the
USART_ReceiveData function. The code and comments will tell you how to call the functions and
what values to send and receive. A good way of browsing the code is through gitlab.

Exercise

2) Write an inbyte routine. Write a main function that accepts some characters from the keyboard
and then writes them out to the screen.

Credit exercise.
3) Write a serial port receive routine which implements full error handling — for overrun, noise

framing and parity errors. You can either print out error messages or flash warning LEDs.
Demonstrate by sending deliberately corrupted data.

11 of 14

SeS Worksheet 4 08/02/22

Appendix main.c serial port code

#include "com_port.h"

#include <stm32f10x.h>
#include <stm32f10x_rcc.h>
#include <stm32f10x_gpio.h>
#include <stm32f10x_usart.h>

int _io_putchar(int c) {
/* Wait until ready to send */
while (USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET)
{
}

USART_SendData(USART?2, (u16) c);

return c;

}

void COMPortInit (void) {
USART_InitTypeDef USART _InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;

/* Enable GPIO clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_AFIO, ENABLE);

/* Enable USART?2 clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);

/* Remap USART, as USART? uses alternate pins */
GPIO_PinRemapConfig(GPIO_Remap_USART2,ENABLE);

/* Configure USART2 Tx pin */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; /*changed 8 to 5 for USART2 craig */
GPIO_InitStructure.GP10_Speed = GP10_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_Init(GPIOD, &GPI0_InitStructure);

/* Configure USART2 Rx pin */

GPIO_InitStructure.GP10_Pin = GPIO_Pin_6; /*changed 9 to 6 for USART2 craig */
GPIO_InitStructure.GPIO_Mode = GPI0O_Mode_IN_FLOATING;

GPIO_Init(GPIOD, &GPI0_InitStructure);

/* Configure USART 8N1 */

USART _InitStructure.USART_BaudRate = mainCOM_PORT_BAUD_RATE;

USART _InitStructure.USART_WordLength = USART_WordLength_8b;

USART _InitStructure.USART_StopBits = USART_StopBits_1;

USART _InitStructure.USART_Parity = USART_Parity_No;

USART _InitStructure.USART_HardwareFlowControl =USART_HardwareFlowControl_None;

12 of 14

SeS Worksheet 4

USART _InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_Init(USART2, &USART _InitStructure);

/* Enable USART */
USART_Cmd(USART2, ENABLE);

}

int main(void)
{
int i;
COMPortInit();
for (i=0;1i!=10; i++)
{
__io_putchar('h'");
__io_putchar('e");
__io_putchar('l");
__io_putchar('l');
__io_putchar('o");

}

__io_putchar("\n");
_io_putchar('b");
_io_putchar('y");
__io_putchar('e");

}

#ifdef USE_FULL_ASSERT

/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.

* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None

*/

void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name
and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* Infinite loop */
while (1)

/ ** (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

13 of 14

08/02/22

SeS Worksheet 4 08/02/22

14 of 14

