"""Test the split module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy import stats from scipy.misc import comb from itertools import combinations from sklearn.utils.fixes import combinations_with_replacement from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import _num_samples from sklearn.utils.mocking import MockDataFrame from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import LabelKFold from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import LeaveOneLabelOut from sklearn.model_selection import LeavePOut from sklearn.model_selection import LeavePLabelOut from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import LabelShuffleSplit from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import PredefinedSplit from sklearn.model_selection import check_cv from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.model_selection._split import _safe_split from sklearn.model_selection._split import _validate_shuffle_split from sklearn.model_selection._split import _CVIterableWrapper from sklearn.model_selection._split import _build_repr from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_classification from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.svm import SVC X = np.ones(10) y = np.arange(10) // 2 P_sparse = coo_matrix(np.eye(5)) iris = load_iris() digits = load_digits() class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} @ignore_warnings def test_cross_validator_with_default_indices(): n_samples = 4 n_unique_labels = 4 n_folds = 2 p = 2 n_iter = 10 # (the default value) X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) X_1d = np.array([1, 2, 3, 4]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = LeaveOneOut() lpo = LeavePOut(p) kf = KFold(n_folds) skf = StratifiedKFold(n_folds) lolo = LeaveOneLabelOut() lopo = LeavePLabelOut(p) ss = ShuffleSplit(random_state=0) ps = PredefinedSplit([1, 1, 2, 2]) # n_splits = np of unique folds = 2 n_splits = [n_samples, comb(n_samples, p), n_folds, n_folds, n_unique_labels, comb(n_unique_labels, p), n_iter, 2] for i, cv in enumerate([loo, lpo, kf, skf, lolo, lopo, ss, ps]): # Test if get_n_splits works correctly assert_equal(n_splits[i], cv.get_n_splits(X, y, labels)) # Test if the cross-validator works as expected even if # the data is 1d np.testing.assert_equal(list(cv.split(X, y, labels)), list(cv.split(X_1d, y, labels))) # Test that train, test indices returned are integers for train, test in cv.split(X, y, labels): assert_equal(np.asarray(train).dtype.kind, 'i') assert_equal(np.asarray(train).dtype.kind, 'i') def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, X, y, labels, expected_n_iter=None): n_samples = _num_samples(X) # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(cv.get_n_splits(X, y, labels), expected_n_iter) else: expected_n_iter = cv.get_n_splits(X, y, labels) collected_test_samples = set() iterations = 0 for train, test in cv.split(X, y, labels): check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): X1 = np.array([[1, 2], [3, 4], [5, 6]]) X2 = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, next, KFold(4).split(X1)) # Check that a warning is raised if the least populated class has too few # members. y = np.array([3, 3, -1, -1, 2]) skf_3 = StratifiedKFold(3) assert_warns_message(Warning, "The least populated class", next, skf_3.split(X2, y)) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split with warnings.catch_warnings(): check_cv_coverage(skf_3, X2, y, labels=None, expected_n_iter=3) # Error when number of folds is <= 1 assert_raises(ValueError, KFold, 0) assert_raises(ValueError, KFold, 1) assert_raises(ValueError, StratifiedKFold, 0) assert_raises(ValueError, StratifiedKFold, 1) # When n_folds is not integer: assert_raises(ValueError, KFold, 1.5) assert_raises(ValueError, KFold, 2.0) assert_raises(ValueError, StratifiedKFold, 1.5) assert_raises(ValueError, StratifiedKFold, 2.0) # When shuffle is not a bool: assert_raises(TypeError, KFold, n_folds=4, shuffle=None) def test_kfold_indices(): # Check all indices are returned in the test folds X1 = np.ones(18) kf = KFold(3) check_cv_coverage(kf, X1, y=None, labels=None, expected_n_iter=3) # Check all indices are returned in the test folds even when equal-sized # folds are not possible X2 = np.ones(17) kf = KFold(3) check_cv_coverage(kf, X2, y=None, labels=None, expected_n_iter=3) # Check if get_n_splits returns the number of folds assert_equal(5, KFold(5).get_n_splits(X2)) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets X2 = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]] splits = KFold(2).split(X2[:-1]) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = KFold(2).split(X2) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible X, y = np.ones(4), [1, 1, 0, 0] splits = StratifiedKFold(2).split(X, y) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) X, y = np.ones(7), [1, 1, 1, 0, 0, 0, 0] splits = StratifiedKFold(2).split(X, y) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) # Check if get_n_splits returns the number of folds assert_equal(5, StratifiedKFold(5).get_n_splits(X, y)) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves class ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 X = np.ones(n_samples) y = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in (False, True): for train, test in StratifiedKFold(5, shuffle=shuffle).split(X, y): assert_almost_equal(np.sum(y[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(y[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(y[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(y[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(y[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(y[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for i in range(11, 17): kf = KFold(5).split(X=np.ones(i)) sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), i) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on X = np.ones(17) y = [0] * 3 + [1] * 14 for shuffle in (True, False): cv = StratifiedKFold(3, shuffle=shuffle) for i in range(11, 17): skf = cv.split(X[:i], y[:i]) sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), i) def test_shuffle_kfold(): # Check the indices are shuffled properly kf = KFold(3) kf2 = KFold(3, shuffle=True, random_state=0) kf3 = KFold(3, shuffle=True, random_state=1) X = np.ones(300) all_folds = np.zeros(300) for (tr1, te1), (tr2, te2), (tr3, te3) in zip( kf.split(X), kf2.split(X), kf3.split(X)): for tr_a, tr_b in combinations((tr1, tr2, tr3), 2): # Assert that there is no complete overlap assert_not_equal(len(np.intersect1d(tr_a, tr_b)), len(tr1)) # Set all test indices in successive iterations of kf2 to 1 all_folds[te2] = 1 # Check that all indices are returned in the different test folds assert_equal(sum(all_folds), 300) def test_shuffle_kfold_stratifiedkfold_reproducibility(): # Check that when the shuffle is True multiple split calls produce the # same split when random_state is set X = np.ones(15) # Divisible by 3 y = [0] * 7 + [1] * 8 X2 = np.ones(16) # Not divisible by 3 y2 = [0] * 8 + [1] * 8 kf = KFold(3, shuffle=True, random_state=0) skf = StratifiedKFold(3, shuffle=True, random_state=0) for cv in (kf, skf): np.testing.assert_equal(list(cv.split(X, y)), list(cv.split(X, y))) np.testing.assert_equal(list(cv.split(X2, y2)), list(cv.split(X2, y2))) kf = KFold(3, shuffle=True) skf = StratifiedKFold(3, shuffle=True) for cv in (kf, skf): for data in zip((X, X2), (y, y2)): try: np.testing.assert_equal(list(cv.split(*data)), list(cv.split(*data))) except AssertionError: pass else: raise AssertionError("The splits for data, %s, are same even " "when random state is not set" % data) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage X_40 = np.ones(40) y = [0] * 20 + [1] * 20 kf0 = StratifiedKFold(5, shuffle=True, random_state=0) kf1 = StratifiedKFold(5, shuffle=True, random_state=1) for (_, test0), (_, test1) in zip(kf0.split(X_40, y), kf1.split(X_40, y)): assert_not_equal(set(test0), set(test1)) check_cv_coverage(kf0, X_40, y, labels=None, expected_n_iter=5) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) cv = KFold(n_folds=5, shuffle=False) mean_score = cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = KFold(5, shuffle=True, random_state=0) mean_score = cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = KFold(5, shuffle=True, random_state=1) mean_score = cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = StratifiedKFold(5) mean_score = cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = ShuffleSplit(test_size=0.2, random_state=0).split(X) ss2 = ShuffleSplit(test_size=2, random_state=0).split(X) ss3 = ShuffleSplit(test_size=np.int32(2), random_state=0).split(X) for typ in six.integer_types: ss4 = ShuffleSplit(test_size=typ(2), random_state=0).split(X) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): X = np.arange(7) y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, next, StratifiedShuffleSplit(3, 0.2).split(X, y)) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, next, StratifiedShuffleSplit(3, 2).split(X, y)) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, next, StratifiedShuffleSplit(3, 3, 2).split(X, y)) X = np.arange(9) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, StratifiedShuffleSplit, 3, 0.5, 0.6) assert_raises(ValueError, next, StratifiedShuffleSplit(3, 8, 0.6).split(X, y)) assert_raises(ValueError, next, StratifiedShuffleSplit(3, 0.6, 8).split(X, y)) # Train size or test size too small assert_raises(ValueError, next, StratifiedShuffleSplit(train_size=2).split(X, y)) assert_raises(ValueError, next, StratifiedShuffleSplit(test_size=2).split(X, y)) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = StratifiedShuffleSplit(6, test_size=0.33, random_state=0).split(np.ones(len(y)), y) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = StratifiedShuffleSplit(n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits.split(X=np.ones(n_samples), y=labels): n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) n_train, n_test = _validate_shuffle_split(n_samples, test_size=1./n_folds, train_size=1.-(1./n_folds)) assert_equal(len(train), n_train) assert_equal(len(test), n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(n_train + n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(n_test) / n_samples ex_train_p = float(n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(KFold(5, shuffle=True).split(X)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = PredefinedSplit(folds) # n_splits is simply the no of unique folds assert_equal(len(np.unique(folds)), ps.get_n_splits()) for train_ind, test_ind in ps.split(): ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): labels = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4])] for l in labels: X = y = np.ones(len(l)) n_iter = 6 test_size = 1./3 slo = LabelShuffleSplit(n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(slo.get_n_splits(X, y, labels=l), n_iter) l_unique = np.unique(l) for train, test in slo.split(X, y, labels=l): # First test: no train label is in the test set and vice versa l_train_unique = np.unique(l[train]) l_test_unique = np.unique(l[test]) assert_false(np.any(np.in1d(l[train], l_test_unique))) assert_false(np.any(np.in1d(l[test], l_train_unique))) # Second test: train and test add up to all the data assert_equal(l[train].size + l[test].size, l.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, +- 1 for rounding error assert_true(abs(len(l_test_unique) - round(test_size * len(l_unique))) <= 1) assert_true(abs(len(l_train_unique) - round((1.0 - test_size) * len(l_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling split labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) X = np.ones(len(labels)) labels_changing = np.array(labels, copy=True) lolo = LeaveOneLabelOut().split(X, labels=labels) lolo_changing = LeaveOneLabelOut().split(X, labels=labels) lplo = LeavePLabelOut(n_labels=2).split(X, labels=labels) lplo_changing = LeavePLabelOut(n_labels=2).split(X, labels=labels) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) # n_splits = no of 2 (p) label combinations of the unique labels = 3C2 = 3 assert_equal(3, LeavePLabelOut(n_labels=2).get_n_splits(X, y, labels)) # n_splits = no of unique labels (C(uniq_lbls, 1) = n_unique_labels) assert_equal(3, LeaveOneLabelOut().get_n_splits(X, y, labels)) def test_train_test_split_errors(): assert_raises(ValueError, train_test_split) assert_raises(ValueError, train_test_split, range(3), train_size=1.1) assert_raises(ValueError, train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # don't convert lists to anything else by default split = train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) @ignore_warnings def train_test_split_pandas(): # check train_test_split doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = train_test_split(X_df) def test_shufflesplit_errors(): # When the {test|train}_size is a float/invalid, error is raised at init assert_raises(ValueError, ShuffleSplit, test_size=None, train_size=None) assert_raises(ValueError, ShuffleSplit, test_size=2.0) assert_raises(ValueError, ShuffleSplit, test_size=1.0) assert_raises(ValueError, ShuffleSplit, test_size=0.1, train_size=0.95) assert_raises(ValueError, ShuffleSplit, train_size=1j) # When the {test|train}_size is an int, validation is based on the input X # and happens at split(...) assert_raises(ValueError, next, ShuffleSplit(test_size=11).split(X)) assert_raises(ValueError, next, ShuffleSplit(test_size=10).split(X)) assert_raises(ValueError, next, ShuffleSplit(test_size=8, train_size=3).split(X)) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = ShuffleSplit(random_state=21) assert_array_equal(list(a for a, b in ss.split(X)), list(a for a, b in ss.split(X))) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") X, y = iris.data, iris.target K = np.dot(X, X.T) cv = ShuffleSplit(test_size=0.25, random_state=0) tr, te = list(cv.split(X))[0] X_tr, y_tr = _safe_split(clf, X, y, tr) K_tr, y_tr2 = _safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = _safe_split(clf, X, y, te, tr) K_te, y_te2 = _safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) train_test_split(X, y, test_size=0.2, random_state=42) def test_check_cv(): X = np.ones(9) cv = check_cv(3, classifier=False) # Use numpy.testing.assert_equal which recursively compares # lists of lists np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X))) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = check_cv(3, y_binary, classifier=True) np.testing.assert_equal(list(StratifiedKFold(3).split(X, y_binary)), list(cv.split(X, y_binary))) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = check_cv(3, y_multiclass, classifier=True) np.testing.assert_equal(list(StratifiedKFold(3).split(X, y_multiclass)), list(cv.split(X, y_multiclass))) X = np.ones(5) y_multilabel = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [1, 1, 0, 1], [0, 0, 1, 0]]) cv = check_cv(3, y_multilabel, classifier=True) np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X))) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = check_cv(3, y_multioutput, classifier=True) np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X))) # Check if the old style classes are wrapped to have a split method X = np.ones(9) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv1 = check_cv(3, y_multiclass, classifier=True) with warnings.catch_warnings(record=True): from sklearn.cross_validation import StratifiedKFold as OldSKF cv2 = check_cv(OldSKF(y_multiclass, n_folds=3)) np.testing.assert_equal(list(cv1.split(X, y_multiclass)), list(cv2.split())) assert_raises(ValueError, check_cv, cv="lolo") def test_cv_iterable_wrapper(): y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) with warnings.catch_warnings(record=True): from sklearn.cross_validation import StratifiedKFold as OldSKF cv = OldSKF(y_multiclass, n_folds=3) wrapped_old_skf = _CVIterableWrapper(cv) # Check if split works correctly np.testing.assert_equal(list(cv), list(wrapped_old_skf.split())) # Check if get_n_splits works correctly assert_equal(len(cv), wrapped_old_skf.get_n_splits()) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 X = y = np.ones(n_samples) # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) ideal_n_labels_per_fold = n_samples // n_folds len(np.unique(labels)) # Get the test fold indices from the test set indices of each fold folds = np.zeros(n_samples) lkf = LabelKFold(n_folds=n_folds) for i, (_, test) in enumerate(lkf.split(X, y, labels)): folds[test] = i # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in lkf.split(X, y, labels): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = np.array(['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia']) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed ideal_n_labels_per_fold = n_samples // n_folds X = y = np.ones(n_samples) # Get the test fold indices from the test set indices of each fold folds = np.zeros(n_samples) for i, (_, test) in enumerate(lkf.split(X, y, labels)): folds[test] = i # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in lkf.split(X, y, labels): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) X = y = np.ones(len(labels)) assert_raises_regexp(ValueError, "Cannot have number of folds.*greater", next, LabelKFold(n_folds=3).split(X, y, labels)) def test_nested_cv(): # Test if nested cross validation works with different combinations of cv rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) labels = rng.randint(0, 5, 15) cvs = [LeaveOneLabelOut(), LeaveOneOut(), LabelKFold(), StratifiedKFold(), StratifiedShuffleSplit(n_iter=10, random_state=0)] for inner_cv, outer_cv in combinations_with_replacement(cvs, 2): gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [1, 10]}, cv=inner_cv) cross_val_score(gs, X=X, y=y, labels=labels, cv=outer_cv, fit_params={'labels': labels}) def test_build_repr(): class MockSplitter: def __init__(self, a, b=0, c=None): self.a = a self.b = b self.c = c def __repr__(self): return _build_repr(self) assert_equal(repr(MockSplitter(5, 6)), "MockSplitter(a=5, b=6, c=None)")