From fee7e8a2d9b8d0fd01c388e3102f9a4158fdf922 Mon Sep 17 00:00:00 2001 From: Lars Buitinck <L.J.Buitinck@uva.nl> Date: Tue, 15 Nov 2011 23:46:36 +0100 Subject: [PATCH] FIX use super consistently in SVMs --- sklearn/svm/classes.py | 36 +++++++++++++++++------------------ sklearn/svm/sparse/classes.py | 30 ++++++++++++++--------------- 2 files changed, 33 insertions(+), 33 deletions(-) diff --git a/sklearn/svm/classes.py b/sklearn/svm/classes.py index 30ad3762c8..50b026e942 100644 --- a/sklearn/svm/classes.py +++ b/sklearn/svm/classes.py @@ -164,9 +164,9 @@ class SVC(DenseBaseLibSVM, ClassifierMixin): coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200): - DenseBaseLibSVM.__init__(self, 'c_svc', kernel, degree, gamma, coef0, - tol, C, 0., 0., shrinking, probability, - cache_size) + super(SVC, self).__init__('c_svc', kernel, degree, gamma, coef0, tol, + C, 0., 0., shrinking, probability, + cache_size) class NuSVC(DenseBaseLibSVM, ClassifierMixin): @@ -269,9 +269,9 @@ class NuSVC(DenseBaseLibSVM, ClassifierMixin): coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200): - DenseBaseLibSVM.__init__(self, 'nu_svc', kernel, degree, gamma, - coef0, tol, 0., nu, 0., shrinking, probability, - cache_size) + super(NuSVC, self).__init__('nu_svc', kernel, degree, gamma, coef0, + tol, 0., nu, 0., shrinking, probability, + cache_size) class SVR(DenseBaseLibSVM, RegressorMixin): @@ -359,9 +359,9 @@ class SVR(DenseBaseLibSVM, RegressorMixin): tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, probability=False, cache_size=200): - DenseBaseLibSVM.__init__(self, 'epsilon_svr', kernel, degree, gamma, - coef0, tol, C, 0., epsilon, shrinking, - probability, cache_size) + super(SVR, self).__init__('epsilon_svr', kernel, degree, gamma, coef0, + tol, C, 0., epsilon, shrinking, probability, + cache_size) def fit(self, X, y, sample_weight=None, **params): """ @@ -384,8 +384,8 @@ class SVR(DenseBaseLibSVM, RegressorMixin): Returns self. """ # we copy this method because SVR does not accept class_weight - return DenseBaseLibSVM.fit(self, X, y, sample_weight=sample_weight, - **params) + return super(SVR, self).fit(X, y, sample_weight=sample_weight, + **params) class NuSVR(DenseBaseLibSVM, RegressorMixin): @@ -473,9 +473,9 @@ class NuSVR(DenseBaseLibSVM, RegressorMixin): gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200): - DenseBaseLibSVM.__init__(self, 'nu_svr', kernel, degree, gamma, coef0, - tol, 0, nu, None, shrinking, probability, - cache_size) + super(NuSVR, self).__init__('nu_svr', kernel, degree, gamma, coef0, + tol, 0, nu, None, shrinking, probability, + cache_size) def fit(self, X, y, sample_weight=None, **params): """ @@ -495,7 +495,7 @@ class NuSVR(DenseBaseLibSVM, RegressorMixin): Returns self. """ # we copy this method because SVR does not accept class_weight - return DenseBaseLibSVM.fit(self, X, y, sample_weight=[], **params) + return super(NuSVR, self).fit(X, y, sample_weight=[], **params) class OneClassSVM(DenseBaseLibSVM): @@ -557,9 +557,9 @@ class OneClassSVM(DenseBaseLibSVM): """ def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200): - DenseBaseLibSVM.__init__(self, 'one_class', kernel, degree, gamma, - coef0, tol, 0., nu, 0., shrinking, False, - cache_size) + super(OneClassSVM, self).__init__('one_class', kernel, degree, gamma, + coef0, tol, 0., nu, 0., shrinking, + False, cache_size) def fit(self, X, class_weight={}, sample_weight=None, **params): """ diff --git a/sklearn/svm/sparse/classes.py b/sklearn/svm/sparse/classes.py index 5e3b2aef38..18b8f2a8ee 100644 --- a/sklearn/svm/sparse/classes.py +++ b/sklearn/svm/sparse/classes.py @@ -33,9 +33,9 @@ class SVC(SparseBaseLibSVM, ClassifierMixin): coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200): - SparseBaseLibSVM.__init__(self, 'c_svc', kernel, degree, gamma, coef0, - tol, C, 0., 0., - shrinking, probability, cache_size) + super(SVC, self).__init__('c_svc', kernel, degree, gamma, coef0, tol, + C, 0., 0., shrinking, probability, + cache_size) class NuSVC(SparseBaseLibSVM, ClassifierMixin): @@ -67,9 +67,9 @@ class NuSVC(SparseBaseLibSVM, ClassifierMixin): coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200): - SparseBaseLibSVM.__init__(self, 'nu_svc', kernel, degree, - gamma, coef0, tol, 0., nu, 0., - shrinking, probability, cache_size) + super(NuSVC, self).__init__('nu_svc', kernel, degree, gamma, coef0, + tol, 0., nu, 0., shrinking, probability, + cache_size) class SVR(SparseBaseLibSVM, RegressorMixin): @@ -101,9 +101,9 @@ class SVR(SparseBaseLibSVM, RegressorMixin): tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, probability=False, cache_size=200): - SparseBaseLibSVM.__init__(self, 'epsilon_svr', kernel, - degree, gamma, coef0, tol, C, 0.0, - epsilon, shrinking, probability, cache_size) + super(SVR, self).__init__('epsilon_svr', kernel, degree, gamma, coef0, + tol, C, 0.0, epsilon, shrinking, probability, + cache_size) class NuSVR(SparseBaseLibSVM, RegressorMixin): @@ -135,9 +135,9 @@ class NuSVR(SparseBaseLibSVM, RegressorMixin): gamma=0.0, coef0=0.0, shrinking=True, epsilon=0.1, probability=False, tol=1e-3, cache_size=200): - SparseBaseLibSVM.__init__(self, 'nu_svr', kernel, - degree, gamma, coef0, tol, 1.0, nu, - epsilon, shrinking, probability, cache_size) + super(NuSVR, self).__init__('nu_svr', kernel, degree, gamma, coef0, + tol, 1.0, nu, epsilon, shrinking, + probability, cache_size) class OneClassSVM(SparseBaseLibSVM): @@ -156,9 +156,9 @@ class OneClassSVM(SparseBaseLibSVM): tol=1e-3, nu=0.5, shrinking=True, probability=False, cache_size=200): - SparseBaseLibSVM.__init__(self, 'one_class', kernel, degree, - gamma, coef0, tol, 0.0, nu, 0.0, - shrinking, probability, cache_size) + super(OneClassSVM, self).__init__('one_class', kernel, degree, gamma, + coef0, tol, 0.0, nu, 0.0, shrinking, + probability, cache_size) def fit(self, X, class_weight=None, sample_weight=None): super(OneClassSVM, self).fit( -- GitLab