diff --git a/examples/plot_svm.py b/examples/plot_svm.py deleted file mode 100644 index cd56a5b492b5b9b2c778e389d8a694b2443dbae7..0000000000000000000000000000000000000000 --- a/examples/plot_svm.py +++ /dev/null @@ -1,46 +0,0 @@ -""" -========================== -Linear SVM classifier -========================== - -Simple usage of Support Vector Machines to classify a sample. It will -plot the decision surface and the support vectors. - -""" -import numpy as np -import pylab as pl -from scikits.learn import svm, datasets - -# import some data to play with -iris = datasets.load_iris() -X = iris.data[:, :2] # we only take the first two features. We could - # avoid this ugly slicing by using a two-dim dataset -Y = iris.target - -h=.02 # step size in the mesh - -# we create an instance of SVM and fit out data. We do not scale our -# data since we want to plot the support vectors -clf = svm.SVC(kernel='linear') -clf.fit(X, Y) - -# Plot the decision boundary. For that, we will asign a color to each -# point in the mesh [x_min, m_max]x[y_min, y_max]. -x_min, x_max = X[:,0].min()-1, X[:,0].max()+1 -y_min, y_max = X[:,1].min()-1, X[:,1].max()+1 -xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) -Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) - -# Put the result into a color plot -Z = Z.reshape(xx.shape) -pl.set_cmap(pl.cm.Paired) -pl.pcolormesh(xx, yy, Z) - -# Plot also the training points -pl.scatter(X[:,0], X[:,1], c=Y) -# and the support vectors -pl.scatter(clf.support_[:,0], clf.support_[:, 1], marker='+') -pl.title('3-Class classification using Support Vector Machine. \n' + \ - 'Support Vectors are hightlighted with a +') -pl.axis('tight') -pl.show() diff --git a/examples/plot_svm_hyperplane.py b/examples/plot_svm_hyperplane.py deleted file mode 100644 index f2e930552ffb6c30658063d5a1a2b5d7881d8253..0000000000000000000000000000000000000000 --- a/examples/plot_svm_hyperplane.py +++ /dev/null @@ -1,44 +0,0 @@ -""" -=========================================== -SVM: Maximum separating margin hyperplane -=========================================== - -""" - -import numpy as np -import pylab as pl -from scikits.learn import svm - -# we create 40 separable points -np.random.seed(0) -X = np.r_[np.random.randn(20, 2) - [2,2], np.random.randn(20, 2) + [2, 2]] -Y = [0]*20 + [1]*20 - -# fit the model -clf = svm.SVC(kernel='linear') -clf.fit(X, Y) - -# get the separating hyperplane -w = np.dot(clf.dual_coef_[0], clf.support_) -a = -w[0]/w[1] -xx = np.linspace(-5, 5) -yy = a*xx + (clf.rho_[0])/w[1] - -# plot the parallels to the separating hyperplane that pass through the -# support vectors -b = clf.support_[0] -yy_down = a*xx + (b[1] - a*b[0]) -b = clf.support_[-1] -yy_up = a*xx + (b[1] - a*b[0]) - -# plot the line, the points, and the nearest vectors to the plane -pl.set_cmap(pl.cm.Paired) -pl.plot(xx, yy, 'k-') -pl.plot(xx, yy_down, 'k--') -pl.plot(xx, yy_up, 'k--') -pl.scatter(X[:,0], X[:,1], c=Y) -pl.scatter(clf.support_[:,0], clf.support_[:,1], marker='+') - -pl.axis('tight') -pl.show() - diff --git a/examples/plot_svm_nonlinear.py b/examples/plot_svm_nonlinear.py deleted file mode 100644 index 8b33c28b0a9a8958718074fe908ec2927959866b..0000000000000000000000000000000000000000 --- a/examples/plot_svm_nonlinear.py +++ /dev/null @@ -1,31 +0,0 @@ -""" -================= -Non-linear SVM -================= - -""" - -import numpy as np -import pylab as pl -from scikits.learn import svm - -xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) -np.random.seed(0) -X = np.random.randn(300, 2) -Y = np.logical_xor(X[:,0]>0, X[:,1]>0) - -# fit the model -clf = svm.SVC(impl='nu_svc', kernel='rbf', C=100) -clf.fit(X, Y) - -# plot the line, the points, and the nearest vectors to the plane -Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) -Z = Z.reshape(xx.shape) - -pl.set_cmap(pl.cm.Paired) -pl.pcolormesh(xx, yy, Z) -pl.scatter(X[:,0], X[:,1], c=Y) - -pl.axis('tight') -pl.show() - diff --git a/examples/plot_svm_oneclass.py b/examples/plot_svm_oneclass.py deleted file mode 100644 index 6b437b0dc24563dd1b64705d6ebcdd21d207f25c..0000000000000000000000000000000000000000 --- a/examples/plot_svm_oneclass.py +++ /dev/null @@ -1,28 +0,0 @@ -""" -================== -One-class SVM -================== -""" - -import numpy as np -import pylab as pl -from scikits.learn import svm - -xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) -X = np.random.randn(100, 2) -Y = [0]*100 - -# fit the model -clf = svm.OneClassSVM(nu=0.5) -clf.fit(X, Y) - -# plot the line, the points, and the nearest vectors to the plane -Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) -Z = Z.reshape(xx.shape) - -pl.set_cmap(pl.cm.Paired) -pl.pcolormesh(xx, yy, Z) -pl.scatter(X[:,0], X[:,1], c=Y) -pl.scatter(clf.support_[:,0], clf.support_[:,1], c='black') -pl.axis('tight') -pl.show()