diff --git a/sklearn/linear_model/least_angle.py b/sklearn/linear_model/least_angle.py index 0c004d82468ccc995d53a45960b2983bb38b159b..50b772152e584b7510f8bcb90e2af914c56bcfb7 100644 --- a/sklearn/linear_model/least_angle.py +++ b/sklearn/linear_model/least_angle.py @@ -513,7 +513,7 @@ class Lars(LinearModel, RegressorMixin): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -744,7 +744,7 @@ class LassoLars(Lars): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -899,7 +899,7 @@ def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -983,7 +983,7 @@ class LarsCV(Lars): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -1195,7 +1195,7 @@ class LassoLarsCV(LarsCV): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -1328,7 +1328,7 @@ class LassoLarsIC(LassoLars): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. diff --git a/sklearn/linear_model/omp.py b/sklearn/linear_model/omp.py index 78cf3fb650795f4452cf3cf9f403413c1f773f79..8cf73754538c00965c62ada9228097d9c4f38efc 100644 --- a/sklearn/linear_model/omp.py +++ b/sklearn/linear_model/omp.py @@ -557,7 +557,7 @@ class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -693,7 +693,7 @@ def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. @@ -758,7 +758,7 @@ class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional, default False + normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. diff --git a/sklearn/linear_model/randomized_l1.py b/sklearn/linear_model/randomized_l1.py index 877908a61c7e40a35119d121c0f74a9cbbc8ed4a..8f8f5c12efe87756f71a13196fba5e53a8cee883 100644 --- a/sklearn/linear_model/randomized_l1.py +++ b/sklearn/linear_model/randomized_l1.py @@ -416,7 +416,7 @@ class RandomizedLogisticRegression(BaseRandomizedLinearModel): verbose : boolean or integer, optional Sets the verbosity amount - normalize : boolean, optional, default False + normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the