diff --git a/scikits/learn/bayes/bayes.py b/scikits/learn/bayes/regression.py similarity index 100% rename from scikits/learn/bayes/bayes.py rename to scikits/learn/bayes/regression.py diff --git a/scikits/learn/bayes/tests/test_bayes.py b/scikits/learn/bayes/tests/test_bayes.py index c65152a8c294dca2bd3f35b61f62bfb024df9851..74bde12c428785eff51bd4ffd82e4206e124a90d 100644 --- a/scikits/learn/bayes/tests/test_bayes.py +++ b/scikits/learn/bayes/tests/test_bayes.py @@ -1,5 +1,5 @@ import numpy as np -from scikits.learn.bayes.bayes import * +from scikits.learn.bayes.regression import * from numpy.testing import assert_array_almost_equal from scikits.learn.datasets.samples_generator import linear,nonlinear diff --git a/scikits/learn/datasets/samples_generator/linear.py b/scikits/learn/datasets/samples_generator/linear.py index 966bcd84b72a190ecca56e6ac710cafe30f7d652..8492442812b5ea06b7459fb89ad8b3e7d3daac35 100755 --- a/scikits/learn/datasets/samples_generator/linear.py +++ b/scikits/learn/datasets/samples_generator/linear.py @@ -6,7 +6,7 @@ def sparse_uncorrelated(nb_samples=100, nb_features=10): Function creating simulated data with sparse uncorrelated design. (cf.Celeux et al. 2009, Bayesian regularization in regression) X = NR.normal(0,1) - Y = NR.normal(X[:,2]+2*X[:,3]-2*X[:,6]-1.5*X[:,7]) + Y = NR.normal(X[:,0]+2*X[:,1]-2*X[:,2]-1.5*X[:,3]) The number of features is at least 10. Parameters @@ -14,7 +14,7 @@ def sparse_uncorrelated(nb_samples=100, nb_features=10): nb_samples : int number of samples (defaut is 100). nb_features : int - number of features (defaut is 10). + number of features (defaut is 5). Returns ------- @@ -22,6 +22,6 @@ def sparse_uncorrelated(nb_samples=100, nb_features=10): Y : numpy array of shape (nb_samples) for labels """ X = nr.normal(loc=0, scale=1, size=(nb_samples, nb_features)) - Y = nr.normal(loc=X[:, 2] + 2 * X[:, 3] - 2 * X[:,6] - 1.5 * X[:, 7], + Y = nr.normal(loc=X[:, 0] + 2 * X[:, 1] - 2 * X[:,2] - 1.5 * X[:, 3], scale = np.ones(nb_samples)) return X, Y