diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index dee5865bdd33ea56adf510add45f97330bc223ba..813a39339e848c40161b40c429d193e5b0872e85 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -212,8 +212,8 @@ the following two rules:
 
 .. _multimetric_scoring:
 
-Using mutiple metric evaluation
--------------------------------
+Using multiple metric evaluation
+--------------------------------
 
 Scikit-learn also permits evaluation of multiple metrics in ``GridSearchCV``,
 ``RandomizedSearchCV`` and ``cross_validate``.
diff --git a/examples/model_selection/plot_multi_metric_evaluation.py b/examples/model_selection/plot_multi_metric_evaluation.py
index 5f4491e51f49cb591b215ee16acfef484a3c1c31..ea7d60dc20da297da3e7d9ab6934de260966279d 100644
--- a/examples/model_selection/plot_multi_metric_evaluation.py
+++ b/examples/model_selection/plot_multi_metric_evaluation.py
@@ -1,4 +1,7 @@
-"""Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV
+"""
+============================================================================
+Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV
+============================================================================
 
 Multiple metric parameter search can be done by setting the ``scoring``
 parameter to a list of metric scorer names or a dict mapping the scorer names