From c9769dd98fd9bfafee7d378d2abffabf942c883a Mon Sep 17 00:00:00 2001 From: Andreas Mueller <amueller@nyu.edu> Date: Sun, 1 Nov 2015 22:13:54 -0500 Subject: [PATCH] COSMIT don't use the deprecated residuals property of ols --- sklearn/linear_model/tests/test_base.py | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/sklearn/linear_model/tests/test_base.py b/sklearn/linear_model/tests/test_base.py index 1e44c3d18b..f4a43a96f5 100644 --- a/sklearn/linear_model/tests/test_base.py +++ b/sklearn/linear_model/tests/test_base.py @@ -12,7 +12,6 @@ from sklearn.utils.testing import assert_equal from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.base import center_data, sparse_center_data, _rescale_data from sklearn.utils import check_random_state -from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_greater from sklearn.datasets.samples_generator import make_sparse_uncorrelated from sklearn.datasets.samples_generator import make_regression @@ -114,7 +113,7 @@ def test_fit_intercept(): def test_linear_regression_sparse(random_state=0): - "Test that linear regression also works with sparse data" + # Test that linear regression also works with sparse data random_state = check_random_state(random_state) for i in range(10): n = 100 @@ -125,11 +124,12 @@ def test_linear_regression_sparse(random_state=0): ols = LinearRegression() ols.fit(X, y.ravel()) assert_array_almost_equal(beta, ols.coef_ + ols.intercept_) - assert_array_almost_equal(ols.residues_, 0) + + assert_array_almost_equal(ols.predict(X) - y.ravel(), 0) def test_linear_regression_multiple_outcome(random_state=0): - "Test multiple-outcome linear regressions" + # Test multiple-outcome linear regressions X, y = make_regression(random_state=random_state) Y = np.vstack((y, y)).T @@ -145,7 +145,7 @@ def test_linear_regression_multiple_outcome(random_state=0): def test_linear_regression_sparse_multiple_outcome(random_state=0): - "Test multiple-outcome linear regressions with sparse data" + # Test multiple-outcome linear regressions with sparse data random_state = check_random_state(random_state) X, y = make_sparse_uncorrelated(random_state=random_state) X = sparse.coo_matrix(X) @@ -321,4 +321,3 @@ def test_rescale_data(): rescaled_y2 = y * np.sqrt(sample_weight) assert_array_almost_equal(rescaled_X, rescaled_X2) assert_array_almost_equal(rescaled_y, rescaled_y2) - -- GitLab