From c8a372b1f84b7891b9e48b243b09d2fba147660b Mon Sep 17 00:00:00 2001 From: ugurthemaster <ugurthemaster@gmail.com> Date: Wed, 5 Mar 2014 10:55:33 +0200 Subject: [PATCH] Update plot_svm_regression.py library imports have been moved to top of the file. --- examples/svm/plot_svm_regression.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/examples/svm/plot_svm_regression.py b/examples/svm/plot_svm_regression.py index c2c1dbcfe0..16551352cb 100644 --- a/examples/svm/plot_svm_regression.py +++ b/examples/svm/plot_svm_regression.py @@ -8,10 +8,12 @@ Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) -############################################################################### -# Generate sample data import numpy as np +from sklearn.svm import SVR +import pylab as pl +############################################################################### +# Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() @@ -21,8 +23,6 @@ y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model -from sklearn.svm import SVR - svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) @@ -32,7 +32,6 @@ y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results -import pylab as pl pl.scatter(X, y, c='k', label='data') pl.hold('on') pl.plot(X, y_rbf, c='g', label='RBF model') -- GitLab