diff --git a/scikits/learn/mixture.py b/scikits/learn/mixture.py index 60e798c5988201cab0ffb0b95e804e837c1c4044..53f0be891073c118ce37e8026d3bedb8d9c8f72b 100644 --- a/scikits/learn/mixture.py +++ b/scikits/learn/mixture.py @@ -102,7 +102,7 @@ def sample_gaussian(mean, covar, cvtype='diag', n_samples=1): Returns ------- - obs : array, shape (n_features, n) + obs : array, shape (n_features, n_samples) Randomly generated sample """ n_dim = len(mean) @@ -304,15 +304,15 @@ class GMM(BaseEstimator): Parameters ---------- - obs : array_like, shape (n, n_features) + obs : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- - logprob : array_like, shape (n,) + logprob : array_like, shape (n_samples,) Log probabilities of each data point in `obs` - posteriors: array_like, shape (n, n_states) + posteriors: array_like, shape (n_samples, n_states) Posterior probabilities of each mixture component for each observation """ @@ -328,13 +328,13 @@ class GMM(BaseEstimator): Parameters ---------- - obs : array_like, shape (n, n_features) + obs : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- - logprob : array_like, shape (n,) + logprob : array_like, shape (n_samples,) Log probabilities of each data point in `obs` """ logprob, posteriors = self.eval(obs) @@ -351,9 +351,9 @@ class GMM(BaseEstimator): Returns ------- - logprobs : array_like, shape (n,) + logprobs : array_like, shape (n_samples,) Log probability of each point in `obs` under the model. - components : array_like, shape (n,) + components : array_like, shape (n_samples,) Index of the most likelihod mixture components for each observation """ logprob, posteriors = self.eval(obs) @@ -368,7 +368,7 @@ class GMM(BaseEstimator): Returns ------- - C : array, shape = [n_samples] + C : array, shape = (n_samples,) """ logprob, components = self.decode(X) return components @@ -383,7 +383,7 @@ class GMM(BaseEstimator): Returns ------- - T : array-like, shape = [n_samples, n_states] + T : array-like, shape = (n_samples, n_states) Returns the probability of the sample for each Gaussian (state) in the model. """