From bbf74a94a029c27200907b594974347c43f30edf Mon Sep 17 00:00:00 2001
From: har777 <hihari777@gmail.com>
Date: Mon, 22 Jul 2013 13:14:59 +0530
Subject: [PATCH] DOC/FIX twenty_newsgroups.rst should use TfidfVectorizer

Instead of Vectorizer. Fixes #2173.
---
 .mailmap                           | 1 +
 doc/datasets/twenty_newsgroups.rst | 4 ++--
 2 files changed, 3 insertions(+), 2 deletions(-)

diff --git a/.mailmap b/.mailmap
index da54fb9eb9..a23cd42f3d 100644
--- a/.mailmap
+++ b/.mailmap
@@ -27,6 +27,7 @@ Federico Vaggi <vaggi.federico@gmail.com>
 Gael Varoquaux <gael.varoquaux@normalesup.org>
 Gael Varoquaux <gael.varoquaux@normalesup.org> <varoquau@normalesup.org>
 Gilles Louppe <g.louppe@gmail.com> <g.louppe@ulg.ac.be>
+Harikrishnan S <hihari777@gmail.com>
 Hrishikesh Huilgolkar <hrishikesh911@gmail.com> <hrishikesh@QE-IND-WKS007.(none)>
 Immanuel Bayer <mane.desk@gmail.com>
 Jake VanderPlas <vanderplas@astro.washington.edu> <jakevdp@yahoo.com>
diff --git a/doc/datasets/twenty_newsgroups.rst b/doc/datasets/twenty_newsgroups.rst
index 09f7f3bfc9..8d8a5fad27 100644
--- a/doc/datasets/twenty_newsgroups.rst
+++ b/doc/datasets/twenty_newsgroups.rst
@@ -86,9 +86,9 @@ for statistical analysis. This can be achieved with the utilities of the
 example that extract `TF-IDF`_ vectors of unigram tokens::
 
 
-  >>> from sklearn.feature_extraction.text import Vectorizer
+  >>> from sklearn.feature_extraction.text import TfidfVectorizer
   >>> documents = [open(f).read() for f in newsgroups_train.filenames]
-  >>> vectorizer = Vectorizer()
+  >>> vectorizer = TfidfVectorizer()
   >>> vectors = vectorizer.fit_transform(documents)
   >>> vectors.shape
   (1073, 21108)
-- 
GitLab