diff --git a/sklearn/tests/test_multiclass.py b/sklearn/tests/test_multiclass.py index 222485d1e582848ff470fb523f3dc6ac50e2b4d7..fe1b590261e1e4f4a562dab4b3bf52e05e9bbae1 100644 --- a/sklearn/tests/test_multiclass.py +++ b/sklearn/tests/test_multiclass.py @@ -1,8 +1,6 @@ import numpy as np -import scipy.sparse as sp -from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal from nose.tools import assert_almost_equal @@ -122,12 +120,12 @@ def test_ovo_exceptions(): def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC()) - pred = ovo.fit(iris.data, iris.target).predict(iris.data) + ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) - pred = ovo.fit(iris.data, iris.target).predict(iris.data) + ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) @@ -148,12 +146,12 @@ def test_ecoc_exceptions(): def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(), code_size=2) - pred = ecoc.fit(iris.data, iris.target).predict(iris.data) + ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2) - pred = ecoc.fit(iris.data, iris.target).predict(iris.data) + ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2)