diff --git a/scikits/learn/neighbors/benchmarks/bench_balltree.py b/scikits/learn/benchmarks/bench_balltree.py similarity index 100% rename from scikits/learn/neighbors/benchmarks/bench_balltree.py rename to scikits/learn/benchmarks/bench_balltree.py diff --git a/scikits/learn/datasets/iris.py b/scikits/learn/datasets/iris.py deleted file mode 100644 index 59b8cac70e498e69fb093c42a17d8122c5a9dc6a..0000000000000000000000000000000000000000 --- a/scikits/learn/datasets/iris.py +++ /dev/null @@ -1,92 +0,0 @@ -#! /usr/bin/env python -# -*- coding: utf-8 -*- - -# The code and descriptive text is copyrighted and offered under the terms of -# the BSD License from the authors; see below. However, the actual dataset may -# have a different origin and intellectual property status. See the SOURCE and -# COPYRIGHT variables for this information. - -# Copyright (c) 2007 David Cournapeau <cournape@gmail.com> -# 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> -# -Iris Plants Database - -Creator: R.A. Fisher -Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) -Date: July, 1988 - -This is a copy of UCI ML iris datasets. - -References: - - Fisher,R.A. 'The use of multiple measurements in taxonomic problems' - Annual Eugenics, 7, Part II, 179-188 (1936); also in 'Contributions to - Mathematical Statistics' (John Wiley, NY, 1950). - - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis. - (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218. - - Dasarathy, B.V. (1980) 'Nosing Around the Neighborhood: A New System - Structure and Classification Rule for Recognition in Partially Exposed - Environments'. IEEE Transactions on Pattern Analysis and Machine - Intelligence, Vol. PAMI-2, No. 1, 67-71. - - Gates, G.W. (1972) 'The Reduced Nearest Neighbor Rule'. IEEE Transactions - on Information Theory, May 1972, 431-433. - - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II - conceptual clustering system finds 3 classes in the data. - - Many, many more - """ - -DESCR = """ -The famous Iris database, first used by Sir R.A Fisher - -This is perhaps the best known database to be found in the -pattern recognition literature. Fisher's paper is a classic in the field and -is referenced frequently to this day. (See Duda & Hart, for example.) The -data set contains 3 classes of 50 instances each, where each class refers to a -type of iris plant. One class is linearly separable from the other 2; the -latter are NOT linearly separable from each other. - -Number of Instances: 150 (50 in each of three classes) - -Number of Attributes: 4 numeric, predictive attributes and the class - -Attribute Information: - - sepal length in cm - - sepal width in cm - - petal length in cm - - petal width in cm - - class: - - Iris-Setosa - - Iris-Versicolour - - Iris-Virginica - -Summary Statistics: - Min Max Mean SD Class Correlation - sepal length: 4.3 7.9 5.84 0.83 0.7826 - sepal width: 2.0 4.4 3.05 0.43 -0.4194 - petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) - petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) - -Missing Attribute Values: None - -Class Distribution: 33.3% for each of 3 classes. -""" - -import numpy as np -from .base import Bunch - -def load(): - """load the iris data and returns them. - - Returns - ------- - iris : Bunch - See docstring of bunch for a complete description of its members. - - Example - ------- - Let's say you are interested in the samples 10, 25, and 50, and want to - know their class name. - - >>> data = load() - >>> print data.label #doctest: +ELLIPSIS - [ 0. 0. ...][ 0. 0. ...] - """ diff --git a/scikits/learn/neighbors/neighbors.py b/scikits/learn/neighbors.py similarity index 100% rename from scikits/learn/neighbors/neighbors.py rename to scikits/learn/neighbors.py diff --git a/scikits/learn/neighbors/__init__.py b/scikits/learn/neighbors/__init__.py deleted file mode 100644 index 2718fb385ed1b9b1d11fca8b7ff921f67d9d1679..0000000000000000000000000000000000000000 --- a/scikits/learn/neighbors/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from neighbors import Neighbors diff --git a/scikits/learn/neighbors/examples/knn.py b/scikits/learn/neighbors/examples/knn.py deleted file mode 100644 index 5f22a208fa82a5afcd9f2f9065ed611cd0a8f0f7..0000000000000000000000000000000000000000 --- a/scikits/learn/neighbors/examples/knn.py +++ /dev/null @@ -1,30 +0,0 @@ -import numpy as np -import matplotlib.pyplot as plt -from scikits.learn.neighbors import Neighbors - -n = 100 # number of points -data1 = np.random.randn(n,2) + 3.0 -data2 = np.random.randn(n, 2) + 5.0 -data = np.concatenate((data1, data2)) -labels = [0]*n + [1]*n - -# we create the mesh -h = .1 # step size -x = np.arange(-2, 12, h) -y = np.arange(-2, 12, h) -X, Y = np.meshgrid(x, y) - -neigh = Neighbors(data, labels=labels, k=3) - -points= [(x_i, y_j) for x_i in x for y_j in y] -Z = neigh.predict(points) -Z = Z.reshape(np.shape(X)) - -ax = plt.subplot(111) -plt.pcolormesh(X, Y, Z.T) - -# print the population points -plt.scatter(data1[:,0], data1[:,1], c='blue') -plt.scatter(data2[:,0], data2[:,1], c='red') - -plt.show() diff --git a/scikits/learn/neighbors/setup.py b/scikits/learn/neighbors/setup.py deleted file mode 100644 index 03d5bffddc5cf92b34a82b45ae2cad001ffcce2f..0000000000000000000000000000000000000000 --- a/scikits/learn/neighbors/setup.py +++ /dev/null @@ -1,18 +0,0 @@ -import numpy -from os.path import join - -def configuration(parent_package='', top_path=None): - from numpy.distutils.misc_util import Configuration - config = Configuration('neighbors',parent_package,top_path) - - config.add_extension('BallTree', - sources=[join('src', 'BallTree.cpp')], - include_dirs=[numpy.get_include()] - ) - config.add_data_dir('tests') - config.add_data_dir('benchmarks') - return config - -if __name__ == '__main__': - from numpy.distutils.core import setup - setup(**configuration(top_path='').todict()) diff --git a/scikits/learn/neighbors/tests/__init__.py b/scikits/learn/neighbors/tests/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/scikits/learn/setup.py b/scikits/learn/setup.py index 7aa24dfcf682101341e3499d4d4b00d08a13deb8..dbcc203197b13ad9d90eeb267ac03dbb0acbba1c 100644 --- a/scikits/learn/setup.py +++ b/scikits/learn/setup.py @@ -17,6 +17,13 @@ def configuration(parent_package='',top_path=None): depends=[join('src', 'svm.h'), join('src', 'libsvm_helper.c'), ]) + + config.add_extension('BallTree', + sources=[join('src', 'BallTree.cpp')], + include_dirs=[numpy.get_include()] + ) + + return config config.add_subpackage('utils') diff --git a/scikits/learn/neighbors/src/BallTree.cpp b/scikits/learn/src/BallTree.cpp similarity index 100% rename from scikits/learn/neighbors/src/BallTree.cpp rename to scikits/learn/src/BallTree.cpp diff --git a/scikits/learn/neighbors/src/BallTree.h b/scikits/learn/src/BallTree.h similarity index 100% rename from scikits/learn/neighbors/src/BallTree.h rename to scikits/learn/src/BallTree.h diff --git a/scikits/learn/neighbors/src/BallTreePoint.h b/scikits/learn/src/BallTreePoint.h similarity index 100% rename from scikits/learn/neighbors/src/BallTreePoint.h rename to scikits/learn/src/BallTreePoint.h diff --git a/scikits/learn/neighbors/tests/test_neighbors.py b/scikits/learn/tests/test_neighbors.py similarity index 97% rename from scikits/learn/neighbors/tests/test_neighbors.py rename to scikits/learn/tests/test_neighbors.py index 4e59fa068c51ee6043f99b54f9e898388ae7f3e5..8c50320022a28ca086b0824654d04df369918930 100644 --- a/scikits/learn/neighbors/tests/test_neighbors.py +++ b/scikits/learn/tests/test_neighbors.py @@ -1,5 +1,5 @@ import numpy as np -from .. import neighbors +from scikits.learn import neighbors from numpy.testing import assert_array_equal