diff --git a/sklearn/tests/test_multioutput.py b/sklearn/tests/test_multioutput.py index 00085a32af94f0c33d8b42902438ced863213356..0c58d04c275811b3b086d1a2018f53a8c5ca132b 100644 --- a/sklearn/tests/test_multioutput.py +++ b/sklearn/tests/test_multioutput.py @@ -356,7 +356,8 @@ def generate_multilabel_dataset_with_correlations(): X, y = make_classification(n_samples=1000, n_features=100, n_classes=16, - n_informative=10) + n_informative=10, + random_state=0) Y_multi = np.array([[int(yyy) for yyy in format(yy, '#06b')[2:]] for yy in y]) @@ -470,22 +471,17 @@ def test_classifier_chain_vs_independent_models(): # Verify that an ensemble of classifier chains (each of length # N) can achieve a higher Jaccard similarity score than N independent # models - yeast = fetch_mldata('yeast') - X = yeast['data'] - Y = yeast['target'].transpose().toarray() - X_train = X[:2000, :] - X_test = X[2000:, :] - Y_train = Y[:2000, :] - Y_test = Y[2000:, :] + X, Y = generate_multilabel_dataset_with_correlations() + X_train = X[:600, :] + X_test = X[600:, :] + Y_train = Y[:600, :] + Y_test = Y[600:, :] ovr = OneVsRestClassifier(LogisticRegression()) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) - chain = ClassifierChain(LogisticRegression(), - order=np.array([0, 2, 4, 6, 8, 10, - 12, 1, 3, 5, 7, 9, - 11, 13])) + chain = ClassifierChain(LogisticRegression()) chain.fit(X_train, Y_train) Y_pred_chain = chain.predict(X_test)