diff --git a/scikits/learn/datasets/__init__.py b/scikits/learn/datasets/__init__.py
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..d89713f7dfcbdee04d867a88c89cf1eab9e8c2b2 100644
--- a/scikits/learn/datasets/__init__.py
+++ b/scikits/learn/datasets/__init__.py
@@ -0,0 +1 @@
+from base import load
diff --git a/scikits/learn/datasets/base.py b/scikits/learn/datasets/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..a92f85f73c7745e2a6db3894c4d34b2bc8ffa36c
--- /dev/null
+++ b/scikits/learn/datasets/base.py
@@ -0,0 +1,65 @@
+"""
+Base object for all datasets
+"""
+
+# Copyright (c) 2007 David Cournapeau <cournape@gmail.com>
+#               2010 Fabian Pedregosa <fabian.pedregosa@inria.fr>
+#
+
+
+import numpy as np
+
+class Bunch(dict):
+    """
+    Container for dataset.
+
+    Members
+    -------
+    - data : a record array with the actual data
+    - label : label[i] = label index of data[i]
+    - class : class[i] is the string corresponding to label index i.
+    - COPYRIGHT, TITLE, SOURCE, DESCRSHORT, DESCRLONG,
+      NOTE. Information about the dataset.
+    """
+
+    def __init__(self, **kwargs):
+        dict.__init__(self, kwargs)
+        self.__dict__ = self
+
+def load(dataset):
+    """load the data and returns them.
+    
+    Returns
+    -------
+    data : Bunch
+        See docstring of bunch for a complete description of its members.
+
+    Available datasets
+     - iris
+
+    Example
+    -------
+    Let's say you are interested in the samples 10, 25, and 50, and want to
+    know their class name.
+
+    >>> data = load()
+    >>> print data.label #doctest: +ELLIPSIS
+    [ 0.  0. ...]
+    """
+    import csv
+    import os
+    DESCR = ''
+    
+    firis = csv.reader(open(os.path.dirname(__file__) + '/data/%s.csv' % dataset))
+    fdescr = open(os.path.dirname(__file__) + '/descr/%s.rst' % dataset)
+    temp = firis.next()
+    nsamples = int(temp[0])
+    nfeat = int(temp[1])
+    labelnames = temp[2:]
+    data = np.empty((nsamples, nfeat))
+    label = np.empty((nsamples,))
+    for i, ir in enumerate(firis):
+        data[i] = np.asanyarray(ir[:-1], dtype=np.float)
+        label[i] = np.asanyarray(ir[-1], dtype=np.int)
+    return Bunch(data = data, label=label, labelnames=labelnames, DESCR=fdescr.read())
+
diff --git a/scikits/learn/datasets/data/iris.csv b/scikits/learn/datasets/data/iris.csv
new file mode 100644
index 0000000000000000000000000000000000000000..3f521bf33e1cf08cbe28b213fd9fc565a8e488c8
--- /dev/null
+++ b/scikits/learn/datasets/data/iris.csv
@@ -0,0 +1,151 @@
+150, 4, setosa, versicolor, virginica
+5.1,3.5,1.4,0.2,0
+4.9,3.0,1.4,0.2,0
+4.7,3.2,1.3,0.2,0
+4.6,3.1,1.5,0.2,0
+5.0,3.6,1.4,0.2,0
+5.4,3.9,1.7,0.4,0
+4.6,3.4,1.4,0.3,0
+5.0,3.4,1.5,0.2,0
+4.4,2.9,1.4,0.2,0
+4.9,3.1,1.5,0.1,0
+5.4,3.7,1.5,0.2,0
+4.8,3.4,1.6,0.2,0
+4.8,3.0,1.4,0.1,0
+4.3,3.0,1.1,0.1,0
+5.8,4.0,1.2,0.2,0
+5.7,4.4,1.5,0.4,0
+5.4,3.9,1.3,0.4,0
+5.1,3.5,1.4,0.3,0
+5.7,3.8,1.7,0.3,0
+5.1,3.8,1.5,0.3,0
+5.4,3.4,1.7,0.2,0
+5.1,3.7,1.5,0.4,0
+4.6,3.6,1.0,0.2,0
+5.1,3.3,1.7,0.5,0
+4.8,3.4,1.9,0.2,0
+5.0,3.0,1.6,0.2,0
+5.0,3.4,1.6,0.4,0
+5.2,3.5,1.5,0.2,0
+5.2,3.4,1.4,0.2,0
+4.7,3.2,1.6,0.2,0
+4.8,3.1,1.6,0.2,0
+5.4,3.4,1.5,0.4,0
+5.2,4.1,1.5,0.1,0
+5.5,4.2,1.4,0.2,0
+4.9,3.1,1.5,0.1,0
+5.0,3.2,1.2,0.2,0
+5.5,3.5,1.3,0.2,0
+4.9,3.1,1.5,0.1,0
+4.4,3.0,1.3,0.2,0
+5.1,3.4,1.5,0.2,0
+5.0,3.5,1.3,0.3,0
+4.5,2.3,1.3,0.3,0
+4.4,3.2,1.3,0.2,0
+5.0,3.5,1.6,0.6,0
+5.1,3.8,1.9,0.4,0
+4.8,3.0,1.4,0.3,0
+5.1,3.8,1.6,0.2,0
+4.6,3.2,1.4,0.2,0
+5.3,3.7,1.5,0.2,0
+5.0,3.3,1.4,0.2,0
+7.0,3.2,4.7,1.4,1
+6.4,3.2,4.5,1.5,1
+6.9,3.1,4.9,1.5,1
+5.5,2.3,4.0,1.3,1
+6.5,2.8,4.6,1.5,1
+5.7,2.8,4.5,1.3,1
+6.3,3.3,4.7,1.6,1
+4.9,2.4,3.3,1.0,1
+6.6,2.9,4.6,1.3,1
+5.2,2.7,3.9,1.4,1
+5.0,2.0,3.5,1.0,1
+5.9,3.0,4.2,1.5,1
+6.0,2.2,4.0,1.0,1
+6.1,2.9,4.7,1.4,1
+5.6,2.9,3.6,1.3,1
+6.7,3.1,4.4,1.4,1
+5.6,3.0,4.5,1.5,1
+5.8,2.7,4.1,1.0,1
+6.2,2.2,4.5,1.5,1
+5.6,2.5,3.9,1.1,1
+5.9,3.2,4.8,1.8,1
+6.1,2.8,4.0,1.3,1
+6.3,2.5,4.9,1.5,1
+6.1,2.8,4.7,1.2,1
+6.4,2.9,4.3,1.3,1
+6.6,3.0,4.4,1.4,1
+6.8,2.8,4.8,1.4,1
+6.7,3.0,5.0,1.7,1
+6.0,2.9,4.5,1.5,1
+5.7,2.6,3.5,1.0,1
+5.5,2.4,3.8,1.1,1
+5.5,2.4,3.7,1.0,1
+5.8,2.7,3.9,1.2,1
+6.0,2.7,5.1,1.6,1
+5.4,3.0,4.5,1.5,1
+6.0,3.4,4.5,1.6,1
+6.7,3.1,4.7,1.5,1
+6.3,2.3,4.4,1.3,1
+5.6,3.0,4.1,1.3,1
+5.5,2.5,4.0,1.3,1
+5.5,2.6,4.4,1.2,1
+6.1,3.0,4.6,1.4,1
+5.8,2.6,4.0,1.2,1
+5.0,2.3,3.3,1.0,1
+5.6,2.7,4.2,1.3,1
+5.7,3.0,4.2,1.2,1
+5.7,2.9,4.2,1.3,1
+6.2,2.9,4.3,1.3,1
+5.1,2.5,3.0,1.1,1
+5.7,2.8,4.1,1.3,1
+6.3,3.3,6.0,2.5,2
+5.8,2.7,5.1,1.9,2
+7.1,3.0,5.9,2.1,2
+6.3,2.9,5.6,1.8,2
+6.5,3.0,5.8,2.2,2
+7.6,3.0,6.6,2.1,2
+4.9,2.5,4.5,1.7,2
+7.3,2.9,6.3,1.8,2
+6.7,2.5,5.8,1.8,2
+7.2,3.6,6.1,2.5,2
+6.5,3.2,5.1,2.0,2
+6.4,2.7,5.3,1.9,2
+6.8,3.0,5.5,2.1,2
+5.7,2.5,5.0,2.0,2
+5.8,2.8,5.1,2.4,2
+6.4,3.2,5.3,2.3,2
+6.5,3.0,5.5,1.8,2
+7.7,3.8,6.7,2.2,2
+7.7,2.6,6.9,2.3,2
+6.0,2.2,5.0,1.5,2
+6.9,3.2,5.7,2.3,2
+5.6,2.8,4.9,2.0,2
+7.7,2.8,6.7,2.0,2
+6.3,2.7,4.9,1.8,2
+6.7,3.3,5.7,2.1,2
+7.2,3.2,6.0,1.8,2
+6.2,2.8,4.8,1.8,2
+6.1,3.0,4.9,1.8,2
+6.4,2.8,5.6,2.1,2
+7.2,3.0,5.8,1.6,2
+7.4,2.8,6.1,1.9,2
+7.9,3.8,6.4,2.0,2
+6.4,2.8,5.6,2.2,2
+6.3,2.8,5.1,1.5,2
+6.1,2.6,5.6,1.4,2
+7.7,3.0,6.1,2.3,2
+6.3,3.4,5.6,2.4,2
+6.4,3.1,5.5,1.8,2
+6.0,3.0,4.8,1.8,2
+6.9,3.1,5.4,2.1,2
+6.7,3.1,5.6,2.4,2
+6.9,3.1,5.1,2.3,2
+5.8,2.7,5.1,1.9,2
+6.8,3.2,5.9,2.3,2
+6.7,3.3,5.7,2.5,2
+6.7,3.0,5.2,2.3,2
+6.3,2.5,5.0,1.9,2
+6.5,3.0,5.2,2.0,2
+6.2,3.4,5.4,2.3,2
+5.9,3.0,5.1,1.8,2
diff --git a/scikits/learn/datasets/descr/iris.rst b/scikits/learn/datasets/descr/iris.rst
new file mode 100644
index 0000000000000000000000000000000000000000..62a2d8e48404beb4da452a71bd95a173d69dd6ee
--- /dev/null
+++ b/scikits/learn/datasets/descr/iris.rst
@@ -0,0 +1,69 @@
+Iris Plants Database
+
+Source
+------
+Creator: R.A. Fisher 
+Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
+Date: July, 1988
+
+This is a copy of UCI ML iris datasets.
+
+The famous Iris database, first used by Sir R.A Fisher
+
+This is perhaps the best known database to be found in the
+pattern recognition literature.  Fisher's paper is a classic in the field and
+is referenced frequently to this day.  (See Duda & Hart, for example.)  The
+data set contains 3 classes of 50 instances each, where each class refers to a
+type of iris plant.  One class is linearly separable from the other 2; the
+latter are NOT linearly separable from each other.
+
+
+References
+----------
+
+   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
+     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
+     Mathematical Statistics" (John Wiley, NY, 1950).
+   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
+     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
+   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
+     Structure and Classification Rule for Recognition in Partially Exposed
+     Environments".  IEEE Transactions on Pattern Analysis and Machine
+     Intelligence, Vol. PAMI-2, No. 1, 67-71.
+   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
+     on Information Theory, May 1972, 431-433.
+   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
+     conceptual clustering system finds 3 classes in the data.
+   - Many, many more ...
+
+
+Number of Instances: 150 (50 in each of three classes)
+
+Number of Attributes: 4 numeric, predictive attributes and the class
+
+Attribute Information:
+   - sepal length in cm
+   - sepal width in cm
+   - petal length in cm
+   - petal width in cm
+   - class: 
+        - Iris-Setosa
+        - Iris-Versicolour
+        - Iris-Virginica
+
+Summary Statistics:
+                 Min  Max   Mean    SD   Class Correlation
+   sepal length: 4.3  7.9   5.84  0.83    0.7826   
+    sepal width: 2.0  4.4   3.05  0.43   -0.4194
+   petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
+    petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)
+
+Missing Attribute Values: None
+
+Class Distribution: 33.3% for each of 3 classes.
+
+Example
+-------
+    >>> data = load()
+    >>> print data.label #doctest: +ELLIPSIS
+    [ 0. 0. ...][ 0.  0. ...]
diff --git a/scikits/learn/datasets/iris.py b/scikits/learn/datasets/iris.py
new file mode 100644
index 0000000000000000000000000000000000000000..59b8cac70e498e69fb093c42a17d8122c5a9dc6a
--- /dev/null
+++ b/scikits/learn/datasets/iris.py
@@ -0,0 +1,92 @@
+#! /usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# The code and descriptive text is copyrighted and offered under the terms of
+# the BSD License from the authors; see below. However, the actual dataset may
+# have a different origin and intellectual property status. See the SOURCE and
+# COPYRIGHT variables for this information.
+
+# Copyright (c) 2007 David Cournapeau <cournape@gmail.com>
+#               2010 Fabian Pedregosa <fabian.pedregosa@inria.fr>
+#
+Iris Plants Database
+
+Creator: R.A. Fisher 
+Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
+Date: July, 1988
+
+This is a copy of UCI ML iris datasets.
+
+References: 
+   - Fisher,R.A. 'The use of multiple measurements in taxonomic problems'
+     Annual Eugenics, 7, Part II, 179-188 (1936); also in 'Contributions to
+     Mathematical Statistics' (John Wiley, NY, 1950).
+   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
+     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
+   - Dasarathy, B.V. (1980) 'Nosing Around the Neighborhood: A New System
+     Structure and Classification Rule for Recognition in Partially Exposed
+     Environments'.  IEEE Transactions on Pattern Analysis and Machine
+     Intelligence, Vol. PAMI-2, No. 1, 67-71.
+   - Gates, G.W. (1972) 'The Reduced Nearest Neighbor Rule'.  IEEE Transactions
+     on Information Theory, May 1972, 431-433.
+   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al's AUTOCLASS II
+     conceptual clustering system finds 3 classes in the data.
+   - Many, many more
+     """
+
+DESCR   = """
+The famous Iris database, first used by Sir R.A Fisher
+
+This is perhaps the best known database to be found in the
+pattern recognition literature.  Fisher's paper is a classic in the field and
+is referenced frequently to this day.  (See Duda & Hart, for example.)  The
+data set contains 3 classes of 50 instances each, where each class refers to a
+type of iris plant.  One class is linearly separable from the other 2; the
+latter are NOT linearly separable from each other.
+
+Number of Instances: 150 (50 in each of three classes)
+
+Number of Attributes: 4 numeric, predictive attributes and the class
+
+Attribute Information:
+   - sepal length in cm
+   - sepal width in cm
+   - petal length in cm
+   - petal width in cm
+   - class: 
+        - Iris-Setosa
+        - Iris-Versicolour
+        - Iris-Virginica
+
+Summary Statistics:
+                 Min  Max   Mean    SD   Class Correlation
+   sepal length: 4.3  7.9   5.84  0.83    0.7826   
+    sepal width: 2.0  4.4   3.05  0.43   -0.4194
+   petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
+    petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)
+
+Missing Attribute Values: None
+
+Class Distribution: 33.3% for each of 3 classes.
+"""
+
+import numpy as np
+from .base import Bunch
+
+def load():
+    """load the iris data and returns them.
+    
+    Returns
+    -------
+        iris : Bunch
+            See docstring of bunch for a complete description of its members.
+
+    Example
+    -------
+    Let's say you are interested in the samples 10, 25, and 50, and want to
+    know their class name.
+
+    >>> data = load()
+    >>> print data.label #doctest: +ELLIPSIS
+    [ 0. 0. ...][ 0.  0. ...]
+    """
diff --git a/scikits/learn/datasets/iris/COPYING b/scikits/learn/datasets/iris/COPYING
deleted file mode 100644
index 465e793f163956fa6218b782b8197e06677cdcdd..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/COPYING
+++ /dev/null
@@ -1,34 +0,0 @@
-# The code and descriptive text is copyrighted and offered under the terms of
-# the BSD License from the authors; see below. However, the actual dataset may
-# have a different origin and intellectual property status. See the SOURCE and
-# COPYRIGHT variables for this information.
-
-# Copyright (c) 2007 David Cournapeau <cournape@gmail.com>
-#
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-#
-#     * Redistributions of source code must retain the above copyright
-#       notice, this list of conditions and the following disclaimer.
-#     * Redistributions in binary form must reproduce the above copyright
-#       notice, this list of conditions and the following disclaimer in
-#       the documentation and/or other materials provided with the
-#       distribution.
-#     * Neither the author nor the names of any contributors may be used
-#       to endorse or promote products derived from this software without
-#       specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
-# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
-# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
-# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
-# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/scikits/learn/datasets/iris/__init__.py b/scikits/learn/datasets/iris/__init__.py
deleted file mode 100644
index 11f79492c6bf831645979d0881e96f5666710413..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/__init__.py
+++ /dev/null
@@ -1,10 +0,0 @@
-#! /usr/bin/env python
-# Last Change: Mon Jul 02 02:00 PM 2007 J
-import data as _iris
-__doc__     = _iris.DESCRSHORT
-copyright   = _iris.COPYRIGHT
-source      = _iris.SOURCE
-
-load        = _iris.load
-
-all = ['load', 'copyright', 'source']
diff --git a/scikits/learn/datasets/iris/data.py b/scikits/learn/datasets/iris/data.py
deleted file mode 100644
index 444a9ecbc7b7c6a434bf961c6362b0875049b382..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/data.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#! /usr/bin/env python
-# -*- coding: utf-8 -*-
-# Last Change: Tue Jul 17 04:00 PM 2007 J
-
-# The code and descriptive text is copyrighted and offered under the terms of
-# the BSD License from the authors; see below. However, the actual dataset may
-# have a different origin and intellectual property status. See the SOURCE and
-# COPYRIGHT variables for this information.
-
-# Copyright (c) 2007 David Cournapeau <cournape@gmail.com>
-#
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-#
-#     * Redistributions of source code must retain the above copyright
-#       notice, this list of conditions and the following disclaimer.
-#     * Redistributions in binary form must reproduce the above copyright
-#       notice, this list of conditions and the following disclaimer in
-#       the documentation and/or other materials provided with the
-#       distribution.
-#     * Neither the author nor the names of any contributors may be used
-#       to endorse or promote products derived from this software without
-#       specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
-# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
-# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
-# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
-# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-"""Iris dataset."""
-
-__docformat__ = 'restructuredtext'
-
-COPYRIGHT   = """See SOURCE. """
-TITLE       = "Iris Plants Database"
-SOURCE      = """Creator: R.A. Fisher 
-Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
-Date: July, 1988
-
-This is a copy of UCI ML iris datasets, except that the data are in mm instead
-of cm, so that exact values as int can be given.
-
-References: 
-   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
-     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
-     Mathematical Statistics" (John Wiley, NY, 1950).
-   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
-     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
-   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
-     Structure and Classification Rule for Recognition in Partially Exposed
-     Environments".  IEEE Transactions on Pattern Analysis and Machine
-     Intelligence, Vol. PAMI-2, No. 1, 67-71.
-   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
-     on Information Theory, May 1972, 431-433.
-   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al's AUTOCLASS II
-     conceptual clustering system finds 3 classes in the data."""
-
-DESCRSHORT  = """The famous Iris database, first used by Sir R.A Fisher"""
-
-DESCRLONG   = """This is perhaps the best known database to be found in the
-pattern recognition literature.  Fisher's paper is a classic in the field and
-is referenced frequently to this day.  (See Duda & Hart, for example.)  The
-data set contains 3 classes of 50 instances each, where each class refers to a
-type of iris plant.  One class is linearly separable from the other 2; the
-latter are NOT linearly separable from each other.  """
-
-NOTE        = """
-Number of Instances: 150 (50 in each of three classes)
-
-Number of Attributes: 4 numeric, predictive attributes and the class
-
-Attribute Information:
-   - sepal length in mm
-   - sepal width in mm
-   - petal length in mm
-   - petal width in mm
-   - class: 
-        - Iris-Setosa
-        - Iris-Versicolour
-        - Iris-Virginica
-
-Missing Attribute Values: None
-
-Class Distribution: 33.3% for each of 3 classes.
-"""
-
-import numpy as np
-
-
-def load():
-    """load the iris data and returns them.
-    
-    :returns:
-        d : dict
-            contains the following values:
-            - 'data' : a record array with the actual data
-            - 'label' : label[i] = label index of data[i]
-            - 'class' : class[i] is the string corresponding to label index i.
-
-    Example
-    -------
-    
-    Let's say you are interested in the samples 10, 25, and 50, and want to
-    know their class name.
-
-    >>>> d = load()
-    # >>>> ind = [10, 25, 50]
-    # >>>> lind = d['label'][ind] # returns the label index of each sample
-    # >>>> d['class'][lind] # returns the class name of each sample
-
-    """
-    from iris import SL, SW, PL, PW, labels, LI2LN
-    PW     = np.array(PW, dtype=np.float)
-    PL     = np.array(PL, dtype=np.float)
-    SW     = np.array(SW, dtype=np.float)
-    SL     = np.array(SL, dtype=np.float)
-    labels = np.array(labels, dtype=np.int)
-    return PW, PL, SW, SL, labels
diff --git a/scikits/learn/datasets/iris/iris.py b/scikits/learn/datasets/iris/iris.py
deleted file mode 100644
index 13ff411eac62740b94583fdc3c0ec517295ec6e3..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/iris.py
+++ /dev/null
@@ -1,71 +0,0 @@
-# Autogenerated by convert.py at Tue, 17 Jul 2007 06:47:17 +0000
-
-SL = ['5.1', '4.9', '4.7', '4.6', '5.0', '5.4', '4.6', '5.0', '4.4', '4.9',
-'5.4', '4.8', '4.8', '4.3', '5.8', '5.7', '5.4', '5.1', '5.7', '5.1', '5.4',
-'5.1', '4.6', '5.1', '4.8', '5.0', '5.0', '5.2', '5.2', '4.7', '4.8', '5.4',
-'5.2', '5.5', '4.9', '5.0', '5.5', '4.9', '4.4', '5.1', '5.0', '4.5', '4.4',
-'5.0', '5.1', '4.8', '5.1', '4.6', '5.3', '5.0', '7.0', '6.4', '6.9', '5.5',
-'6.5', '5.7', '6.3', '4.9', '6.6', '5.2', '5.0', '5.9', '6.0', '6.1', '5.6',
-'6.7', '5.6', '5.8', '6.2', '5.6', '5.9', '6.1', '6.3', '6.1', '6.4', '6.6',
-'6.8', '6.7', '6.0', '5.7', '5.5', '5.5', '5.8', '6.0', '5.4', '6.0', '6.7',
-'6.3', '5.6', '5.5', '5.5', '6.1', '5.8', '5.0', '5.6', '5.7', '5.7', '6.2',
-'5.1', '5.7', '6.3', '5.8', '7.1', '6.3', '6.5', '7.6', '4.9', '7.3', '6.7',
-'7.2', '6.5', '6.4', '6.8', '5.7', '5.8', '6.4', '6.5', '7.7', '7.7', '6.0',
-'6.9', '5.6', '7.7', '6.3', '6.7', '7.2', '6.2', '6.1', '6.4', '7.2', '7.4',
-'7.9', '6.4', '6.3', '6.1', '7.7', '6.3', '6.4', '6.0', '6.9', '6.7', '6.9',
-'5.8', '6.8', '6.7', '6.7', '6.3', '6.5', '6.2', '5.9']
-
-SW = ['3.5', '3.0', '3.2', '3.1', '3.6', '3.9', '3.4', '3.4', '2.9', '3.1',
-'3.7', '3.4', '3.0', '3.0', '4.0', '4.4', '3.9', '3.5', '3.8', '3.8', '3.4',
-'3.7', '3.6', '3.3', '3.4', '3.0', '3.4', '3.5', '3.4', '3.2', '3.1', '3.4',
-'4.1', '4.2', '3.1', '3.2', '3.5', '3.1', '3.0', '3.4', '3.5', '2.3', '3.2',
-'3.5', '3.8', '3.0', '3.8', '3.2', '3.7', '3.3', '3.2', '3.2', '3.1', '2.3',
-'2.8', '2.8', '3.3', '2.4', '2.9', '2.7', '2.0', '3.0', '2.2', '2.9', '2.9',
-'3.1', '3.0', '2.7', '2.2', '2.5', '3.2', '2.8', '2.5', '2.8', '2.9', '3.0',
-'2.8', '3.0', '2.9', '2.6', '2.4', '2.4', '2.7', '2.7', '3.0', '3.4', '3.1',
-'2.3', '3.0', '2.5', '2.6', '3.0', '2.6', '2.3', '2.7', '3.0', '2.9', '2.9',
-'2.5', '2.8', '3.3', '2.7', '3.0', '2.9', '3.0', '3.0', '2.5', '2.9', '2.5',
-'3.6', '3.2', '2.7', '3.0', '2.5', '2.8', '3.2', '3.0', '3.8', '2.6', '2.2',
-'3.2', '2.8', '2.8', '2.7', '3.3', '3.2', '2.8', '3.0', '2.8', '3.0', '2.8',
-'3.8', '2.8', '2.8', '2.6', '3.0', '3.4', '3.1', '3.0', '3.1', '3.1', '3.1',
-'2.7', '3.2', '3.3', '3.0', '2.5', '3.0', '3.4', '3.0']
-
-PL = ['1.4', '1.4', '1.3', '1.5', '1.4', '1.7', '1.4', '1.5', '1.4', '1.5',
-'1.5', '1.6', '1.4', '1.1', '1.2', '1.5', '1.3', '1.4', '1.7', '1.5', '1.7',
-'1.5', '1.0', '1.7', '1.9', '1.6', '1.6', '1.5', '1.4', '1.6', '1.6', '1.5',
-'1.5', '1.4', '1.5', '1.2', '1.3', '1.5', '1.3', '1.5', '1.3', '1.3', '1.3',
-'1.6', '1.9', '1.4', '1.6', '1.4', '1.5', '1.4', '4.7', '4.5', '4.9', '4.0',
-'4.6', '4.5', '4.7', '3.3', '4.6', '3.9', '3.5', '4.2', '4.0', '4.7', '3.6',
-'4.4', '4.5', '4.1', '4.5', '3.9', '4.8', '4.0', '4.9', '4.7', '4.3', '4.4',
-'4.8', '5.0', '4.5', '3.5', '3.8', '3.7', '3.9', '5.1', '4.5', '4.5', '4.7',
-'4.4', '4.1', '4.0', '4.4', '4.6', '4.0', '3.3', '4.2', '4.2', '4.2', '4.3',
-'3.0', '4.1', '6.0', '5.1', '5.9', '5.6', '5.8', '6.6', '4.5', '6.3', '5.8',
-'6.1', '5.1', '5.3', '5.5', '5.0', '5.1', '5.3', '5.5', '6.7', '6.9', '5.0',
-'5.7', '4.9', '6.7', '4.9', '5.7', '6.0', '4.8', '4.9', '5.6', '5.8', '6.1',
-'6.4', '5.6', '5.1', '5.6', '6.1', '5.6', '5.5', '4.8', '5.4', '5.6', '5.1',
-'5.1', '5.9', '5.7', '5.2', '5.0', '5.2', '5.4', '5.1']
-
-PW = ['0.2', '0.2', '0.2', '0.2', '0.2', '0.4', '0.3', '0.2', '0.2', '0.1',
-'0.2', '0.2', '0.1', '0.1', '0.2', '0.4', '0.4', '0.3', '0.3', '0.3', '0.2',
-'0.4', '0.2', '0.5', '0.2', '0.2', '0.4', '0.2', '0.2', '0.2', '0.2', '0.4',
-'0.1', '0.2', '0.1', '0.2', '0.2', '0.1', '0.2', '0.2', '0.3', '0.3', '0.2',
-'0.6', '0.4', '0.3', '0.2', '0.2', '0.2', '0.2', '1.4', '1.5', '1.5', '1.3',
-'1.5', '1.3', '1.6', '1.0', '1.3', '1.4', '1.0', '1.5', '1.0', '1.4', '1.3',
-'1.4', '1.5', '1.0', '1.5', '1.1', '1.8', '1.3', '1.5', '1.2', '1.3', '1.4',
-'1.4', '1.7', '1.5', '1.0', '1.1', '1.0', '1.2', '1.6', '1.5', '1.6', '1.5',
-'1.3', '1.3', '1.3', '1.2', '1.4', '1.2', '1.0', '1.3', '1.2', '1.3', '1.3',
-'1.1', '1.3', '2.5', '1.9', '2.1', '1.8', '2.2', '2.1', '1.7', '1.8', '1.8',
-'2.5', '2.0', '1.9', '2.1', '2.0', '2.4', '2.3', '1.8', '2.2', '2.3', '1.5',
-'2.3', '2.0', '2.0', '1.8', '2.1', '1.8', '1.8', '1.8', '2.1', '1.6', '1.9',
-'2.0', '2.2', '1.5', '1.4', '2.3', '2.4', '1.8', '1.8', '2.1', '2.4', '2.3',
-'1.9', '2.3', '2.5', '2.3', '1.9', '2.0', '2.3', '1.8']
-
-labels = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
-2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
-
-LI2LN = {0: 'Iris-setosa', 1: 'Iris-versicolor', 2: 'Iris-virginica'}
-
diff --git a/scikits/learn/datasets/iris/src/convert.py b/scikits/learn/datasets/iris/src/convert.py
deleted file mode 100755
index 86111fd77ce3b4cd9779ddf666045dc2fc287ebd..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/src/convert.py
+++ /dev/null
@@ -1,44 +0,0 @@
-#! /usr/bin/env python
-# Last Change: Tue Jul 17 03:00 PM 2007 J
-
-# This script generates a python file from the txt data
-import time
-import csv
-
-from scikits.learn.datasets.misc import dumpvar
-
-# array for equivalence label index <> label name
-ln2li = {'Iris-setosa' : 0, 'Iris-versicolor': 1, 'Iris-virginica' :2}
-li2ln = {}
-for c,i in ln2li.items():
-    li2ln[i] = c
-
-# Load the data
-dataname = 'iris.data'
-f = open(dataname, 'r')
-a = csv.reader(f)
-el = [i for i in a]
-# Remove last value corresponding to empty line in data file
-el.remove(el[-1])
-assert len(el) == 150
-
-sl = [i[0] for i in el]
-sw = [i[1] for i in el]
-pl = [i[2] for i in el]
-pw = [i[3] for i in el]
-cl = [i[4] for i in el]
-
-# dcl[i] = label index of data[i]
-dcl = [ln2li[i] for i in cl]
-
-# Write the data in oldfaitful.py
-a = open("../iris.py", "w")
-a.write('# Autogenerated by convert.py at %s\n\n' % 
-        time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()))
-
-a.writelines(dumpvar(sl, 'SL'))
-a.writelines(dumpvar(sw, 'SW'))
-a.writelines(dumpvar(pl, 'PL'))
-a.writelines(dumpvar(pw, 'PW'))
-a.writelines(dumpvar(dcl, 'LABELS'))
-a.writelines(dumpvar(li2ln, 'LI2LN'))
diff --git a/scikits/learn/datasets/iris/src/iris.data b/scikits/learn/datasets/iris/src/iris.data
deleted file mode 100644
index 5c4316cd695e7c72f1db7ef496ffd2d2ef705b25..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/src/iris.data
+++ /dev/null
@@ -1,151 +0,0 @@
-5.1,3.5,1.4,0.2,Iris-setosa
-4.9,3.0,1.4,0.2,Iris-setosa
-4.7,3.2,1.3,0.2,Iris-setosa
-4.6,3.1,1.5,0.2,Iris-setosa
-5.0,3.6,1.4,0.2,Iris-setosa
-5.4,3.9,1.7,0.4,Iris-setosa
-4.6,3.4,1.4,0.3,Iris-setosa
-5.0,3.4,1.5,0.2,Iris-setosa
-4.4,2.9,1.4,0.2,Iris-setosa
-4.9,3.1,1.5,0.1,Iris-setosa
-5.4,3.7,1.5,0.2,Iris-setosa
-4.8,3.4,1.6,0.2,Iris-setosa
-4.8,3.0,1.4,0.1,Iris-setosa
-4.3,3.0,1.1,0.1,Iris-setosa
-5.8,4.0,1.2,0.2,Iris-setosa
-5.7,4.4,1.5,0.4,Iris-setosa
-5.4,3.9,1.3,0.4,Iris-setosa
-5.1,3.5,1.4,0.3,Iris-setosa
-5.7,3.8,1.7,0.3,Iris-setosa
-5.1,3.8,1.5,0.3,Iris-setosa
-5.4,3.4,1.7,0.2,Iris-setosa
-5.1,3.7,1.5,0.4,Iris-setosa
-4.6,3.6,1.0,0.2,Iris-setosa
-5.1,3.3,1.7,0.5,Iris-setosa
-4.8,3.4,1.9,0.2,Iris-setosa
-5.0,3.0,1.6,0.2,Iris-setosa
-5.0,3.4,1.6,0.4,Iris-setosa
-5.2,3.5,1.5,0.2,Iris-setosa
-5.2,3.4,1.4,0.2,Iris-setosa
-4.7,3.2,1.6,0.2,Iris-setosa
-4.8,3.1,1.6,0.2,Iris-setosa
-5.4,3.4,1.5,0.4,Iris-setosa
-5.2,4.1,1.5,0.1,Iris-setosa
-5.5,4.2,1.4,0.2,Iris-setosa
-4.9,3.1,1.5,0.1,Iris-setosa
-5.0,3.2,1.2,0.2,Iris-setosa
-5.5,3.5,1.3,0.2,Iris-setosa
-4.9,3.1,1.5,0.1,Iris-setosa
-4.4,3.0,1.3,0.2,Iris-setosa
-5.1,3.4,1.5,0.2,Iris-setosa
-5.0,3.5,1.3,0.3,Iris-setosa
-4.5,2.3,1.3,0.3,Iris-setosa
-4.4,3.2,1.3,0.2,Iris-setosa
-5.0,3.5,1.6,0.6,Iris-setosa
-5.1,3.8,1.9,0.4,Iris-setosa
-4.8,3.0,1.4,0.3,Iris-setosa
-5.1,3.8,1.6,0.2,Iris-setosa
-4.6,3.2,1.4,0.2,Iris-setosa
-5.3,3.7,1.5,0.2,Iris-setosa
-5.0,3.3,1.4,0.2,Iris-setosa
-7.0,3.2,4.7,1.4,Iris-versicolor
-6.4,3.2,4.5,1.5,Iris-versicolor
-6.9,3.1,4.9,1.5,Iris-versicolor
-5.5,2.3,4.0,1.3,Iris-versicolor
-6.5,2.8,4.6,1.5,Iris-versicolor
-5.7,2.8,4.5,1.3,Iris-versicolor
-6.3,3.3,4.7,1.6,Iris-versicolor
-4.9,2.4,3.3,1.0,Iris-versicolor
-6.6,2.9,4.6,1.3,Iris-versicolor
-5.2,2.7,3.9,1.4,Iris-versicolor
-5.0,2.0,3.5,1.0,Iris-versicolor
-5.9,3.0,4.2,1.5,Iris-versicolor
-6.0,2.2,4.0,1.0,Iris-versicolor
-6.1,2.9,4.7,1.4,Iris-versicolor
-5.6,2.9,3.6,1.3,Iris-versicolor
-6.7,3.1,4.4,1.4,Iris-versicolor
-5.6,3.0,4.5,1.5,Iris-versicolor
-5.8,2.7,4.1,1.0,Iris-versicolor
-6.2,2.2,4.5,1.5,Iris-versicolor
-5.6,2.5,3.9,1.1,Iris-versicolor
-5.9,3.2,4.8,1.8,Iris-versicolor
-6.1,2.8,4.0,1.3,Iris-versicolor
-6.3,2.5,4.9,1.5,Iris-versicolor
-6.1,2.8,4.7,1.2,Iris-versicolor
-6.4,2.9,4.3,1.3,Iris-versicolor
-6.6,3.0,4.4,1.4,Iris-versicolor
-6.8,2.8,4.8,1.4,Iris-versicolor
-6.7,3.0,5.0,1.7,Iris-versicolor
-6.0,2.9,4.5,1.5,Iris-versicolor
-5.7,2.6,3.5,1.0,Iris-versicolor
-5.5,2.4,3.8,1.1,Iris-versicolor
-5.5,2.4,3.7,1.0,Iris-versicolor
-5.8,2.7,3.9,1.2,Iris-versicolor
-6.0,2.7,5.1,1.6,Iris-versicolor
-5.4,3.0,4.5,1.5,Iris-versicolor
-6.0,3.4,4.5,1.6,Iris-versicolor
-6.7,3.1,4.7,1.5,Iris-versicolor
-6.3,2.3,4.4,1.3,Iris-versicolor
-5.6,3.0,4.1,1.3,Iris-versicolor
-5.5,2.5,4.0,1.3,Iris-versicolor
-5.5,2.6,4.4,1.2,Iris-versicolor
-6.1,3.0,4.6,1.4,Iris-versicolor
-5.8,2.6,4.0,1.2,Iris-versicolor
-5.0,2.3,3.3,1.0,Iris-versicolor
-5.6,2.7,4.2,1.3,Iris-versicolor
-5.7,3.0,4.2,1.2,Iris-versicolor
-5.7,2.9,4.2,1.3,Iris-versicolor
-6.2,2.9,4.3,1.3,Iris-versicolor
-5.1,2.5,3.0,1.1,Iris-versicolor
-5.7,2.8,4.1,1.3,Iris-versicolor
-6.3,3.3,6.0,2.5,Iris-virginica
-5.8,2.7,5.1,1.9,Iris-virginica
-7.1,3.0,5.9,2.1,Iris-virginica
-6.3,2.9,5.6,1.8,Iris-virginica
-6.5,3.0,5.8,2.2,Iris-virginica
-7.6,3.0,6.6,2.1,Iris-virginica
-4.9,2.5,4.5,1.7,Iris-virginica
-7.3,2.9,6.3,1.8,Iris-virginica
-6.7,2.5,5.8,1.8,Iris-virginica
-7.2,3.6,6.1,2.5,Iris-virginica
-6.5,3.2,5.1,2.0,Iris-virginica
-6.4,2.7,5.3,1.9,Iris-virginica
-6.8,3.0,5.5,2.1,Iris-virginica
-5.7,2.5,5.0,2.0,Iris-virginica
-5.8,2.8,5.1,2.4,Iris-virginica
-6.4,3.2,5.3,2.3,Iris-virginica
-6.5,3.0,5.5,1.8,Iris-virginica
-7.7,3.8,6.7,2.2,Iris-virginica
-7.7,2.6,6.9,2.3,Iris-virginica
-6.0,2.2,5.0,1.5,Iris-virginica
-6.9,3.2,5.7,2.3,Iris-virginica
-5.6,2.8,4.9,2.0,Iris-virginica
-7.7,2.8,6.7,2.0,Iris-virginica
-6.3,2.7,4.9,1.8,Iris-virginica
-6.7,3.3,5.7,2.1,Iris-virginica
-7.2,3.2,6.0,1.8,Iris-virginica
-6.2,2.8,4.8,1.8,Iris-virginica
-6.1,3.0,4.9,1.8,Iris-virginica
-6.4,2.8,5.6,2.1,Iris-virginica
-7.2,3.0,5.8,1.6,Iris-virginica
-7.4,2.8,6.1,1.9,Iris-virginica
-7.9,3.8,6.4,2.0,Iris-virginica
-6.4,2.8,5.6,2.2,Iris-virginica
-6.3,2.8,5.1,1.5,Iris-virginica
-6.1,2.6,5.6,1.4,Iris-virginica
-7.7,3.0,6.1,2.3,Iris-virginica
-6.3,3.4,5.6,2.4,Iris-virginica
-6.4,3.1,5.5,1.8,Iris-virginica
-6.0,3.0,4.8,1.8,Iris-virginica
-6.9,3.1,5.4,2.1,Iris-virginica
-6.7,3.1,5.6,2.4,Iris-virginica
-6.9,3.1,5.1,2.3,Iris-virginica
-5.8,2.7,5.1,1.9,Iris-virginica
-6.8,3.2,5.9,2.3,Iris-virginica
-6.7,3.3,5.7,2.5,Iris-virginica
-6.7,3.0,5.2,2.3,Iris-virginica
-6.3,2.5,5.0,1.9,Iris-virginica
-6.5,3.0,5.2,2.0,Iris-virginica
-6.2,3.4,5.4,2.3,Iris-virginica
-5.9,3.0,5.1,1.8,Iris-virginica
-
diff --git a/scikits/learn/datasets/iris/src/iris.names b/scikits/learn/datasets/iris/src/iris.names
deleted file mode 100644
index 7730e5d2699edf21fc3f600bba26d09962cc19fb..0000000000000000000000000000000000000000
--- a/scikits/learn/datasets/iris/src/iris.names
+++ /dev/null
@@ -1,62 +0,0 @@
-1. Title: Iris Plants Database
-
-2. Sources:
-     (a) Creator: R.A. Fisher
-     (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
-     (c) Date: July, 1988
-
-3. Past Usage:
-   - Publications: too many to mention!!!  Here are a few.
-   1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
-      Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
-      to Mathematical Statistics" (John Wiley, NY, 1950).
-   2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
-      (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
-   3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
-      Structure and Classification Rule for Recognition in Partially Exposed
-      Environments".  IEEE Transactions on Pattern Analysis and Machine
-      Intelligence, Vol. PAMI-2, No. 1, 67-71.
-      -- Results:
-         -- very low misclassification rates (0% for the setosa class)
-   4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE 
-      Transactions on Information Theory, May 1972, 431-433.
-      -- Results:
-         -- very low misclassification rates again
-   5. See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al's AUTOCLASS II
-      conceptual clustering system finds 3 classes in the data.
-
-4. Relevant Information:
-   --- This is perhaps the best known database to be found in the pattern
-       recognition literature.  Fisher's paper is a classic in the field
-       and is referenced frequently to this day.  (See Duda & Hart, for
-       example.)  The data set contains 3 classes of 50 instances each,
-       where each class refers to a type of iris plant.  One class is
-       linearly separable from the other 2; the latter are NOT linearly
-       separable from each other.
-   --- Predicted attribute: class of iris plant.
-   --- This is an exceedingly simple domain.
-
-5. Number of Instances: 150 (50 in each of three classes)
-
-6. Number of Attributes: 4 numeric, predictive attributes and the class
-
-7. Attribute Information:
-   1. sepal length in cm
-   2. sepal width in cm
-   3. petal length in cm
-   4. petal width in cm
-   5. class: 
-      -- Iris Setosa
-      -- Iris Versicolour
-      -- Iris Virginica
-
-8. Missing Attribute Values: None
-
-Summary Statistics:
-	         Min  Max   Mean    SD   Class Correlation
-   sepal length: 4.3  7.9   5.84  0.83    0.7826   
-    sepal width: 2.0  4.4   3.05  0.43   -0.4194
-   petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
-    petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)
-
-9. Class Distribution: 33.3% for each of 3 classes.