From 90f0bbf3001f5149a40271305c1fa771b26e4ed7 Mon Sep 17 00:00:00 2001
From: Sebastin Santy <sebastinssanty@gmail.com>
Date: Tue, 11 Jul 2017 03:54:07 +0530
Subject: [PATCH] DOC Residual sum vs. regression sum (#9314)

---
 sklearn/multioutput.py | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/sklearn/multioutput.py b/sklearn/multioutput.py
index 64e394272f..6906d95869 100644
--- a/sklearn/multioutput.py
+++ b/sklearn/multioutput.py
@@ -252,8 +252,8 @@ class MultiOutputRegressor(MultiOutputEstimator, RegressorMixin):
     def score(self, X, y, sample_weight=None):
         """Returns the coefficient of determination R^2 of the prediction.
 
-        The coefficient R^2 is defined as (1 - u/v), where u is the regression
-        sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual
+        The coefficient R^2 is defined as (1 - u/v), where u is the residual
+        sum of squares ((y_true - y_pred) ** 2).sum() and v is the regression
         sum of squares ((y_true - y_true.mean()) ** 2).sum().
         Best possible score is 1.0 and it can be negative (because the
         model can be arbitrarily worse). A constant model that always
-- 
GitLab