diff --git a/sklearn/multioutput.py b/sklearn/multioutput.py index 64e394272ffd7fd9211d2d356a0ebd597cad0f2d..6906d95869f2bfe7eeecfc9b9ba0e26d413fce52 100644 --- a/sklearn/multioutput.py +++ b/sklearn/multioutput.py @@ -252,8 +252,8 @@ class MultiOutputRegressor(MultiOutputEstimator, RegressorMixin): def score(self, X, y, sample_weight=None): """Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression - sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual + The coefficient R^2 is defined as (1 - u/v), where u is the residual + sum of squares ((y_true - y_pred) ** 2).sum() and v is the regression sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always