diff --git a/scikits/learn/benchmarks/bench_svm.py b/scikits/learn/benchmarks/bench_svm.py index ed9ef1de31c4b458ea81b033543ad96f929be0be..6c966e57da5f1493e0ddc6fc32286938b63e75e1 100644 --- a/scikits/learn/benchmarks/bench_svm.py +++ b/scikits/learn/benchmarks/bench_svm.py @@ -31,14 +31,14 @@ def bench_scikit(X, Y, T): bench with scikit-learn bindings on libsvm """ import scikits.learn - from scikits.learn.svm import SVM + from scikits.learn.svm import SVC gc.collect() # start time tstart = datetime.now() - clf = scikits.learn.svm.SVM(kernel='linear', scale=False); + clf = scikits.learn.svm.SVC(kernel='linear'); clf.fit(X, Y); Z = clf.predict(T) delta = (datetime.now() - tstart) @@ -93,14 +93,17 @@ def bench_pymvpa(X, Y, T): if __name__ == '__main__': - from scikits.learn.datasets.iris import load - SP, SW, PL, PW, LABELS = load() - X = np.c_[SP, SW, PL, PW] - Y = LABELS + from scikits.learn.datasets import load + iris = load('iris') + X = iris.data + Y = iris.target n = 100 step = 100 for i in range(n): + print '============================================' + print 'Entering iteration %s of %s' % (i, n) + print '============================================' T = np.random.randn(step*i, 4) bench_scikit(X, Y, T) bench_pymvpa(X, Y, T) @@ -136,7 +139,7 @@ if __name__ == '__main__': dimension = start_dim for i in range(0, n): print '============================================' - print 'Entering iteration %s' % i + print 'Entering iteration %s of %s' % (i, n) print '============================================' dimension += step X, Y = sparse_uncorrelated(nb_features=dimension, nb_samples=100)