diff --git a/doc/sphinxext/gen_rst.py b/doc/sphinxext/gen_rst.py index 231d02759ad5fea1baa2de48899b8aae8cd0a321..de4b325fd0522e2195b58b25574bc524235b7b97 100644 --- a/doc/sphinxext/gen_rst.py +++ b/doc/sphinxext/gen_rst.py @@ -101,7 +101,7 @@ def extract_docstring(filename): docstring = '' first_par = '' - tokens = tokenize.generate_tokens(lines.__iter__().next) + tokens = tokenize.generate_tokens(iter(lines).next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): diff --git a/examples/mixture/plot_gmm_classifier.py b/examples/mixture/plot_gmm_classifier.py index 288ff2809e542b18a316cbdd6edb651d7e83e55b..92f113bb44e8254f66e5e42af98193753df1c7e9 100644 --- a/examples/mixture/plot_gmm_classifier.py +++ b/examples/mixture/plot_gmm_classifier.py @@ -54,7 +54,7 @@ iris = datasets.load_iris() # (25%) sets. skf = StratifiedKFold(iris.target, k=4) # Only take the first fold. -train_index, test_index = skf.__iter__().next() +train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] diff --git a/sklearn/cross_validation.py b/sklearn/cross_validation.py index 3e409d992c0f832832b905aedd3665f907831974..026f0d97c16d7d9df5f85d07549d7dbcf180fade 100644 --- a/sklearn/cross_validation.py +++ b/sklearn/cross_validation.py @@ -1216,7 +1216,7 @@ def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps calls to ``check_arrays`` and - ``iter(ShuffleSplit(n_samples)).next()`` and application to input + ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. @@ -1304,7 +1304,7 @@ def train_test_split(*arrays, **options): train_size=train_size, random_state=random_state, indices=True) - train, test = iter(cv).next() + train, test = next(iter(cv)) splitted = [] for a in arrays: splitted.append(a[train]) diff --git a/sklearn/datasets/base.py b/sklearn/datasets/base.py index 90b42fc02422046d9e418b3309c882bad19d0f77..82c1f21242fb01f16b091a6243969237e90aff55 100644 --- a/sklearn/datasets/base.py +++ b/sklearn/datasets/base.py @@ -231,7 +231,7 @@ def load_iris(): module_path = dirname(__file__) data_file = csv.reader(open(join(module_path, 'data', 'iris.csv'))) fdescr = open(join(module_path, 'descr', 'iris.rst')) - temp = data_file.next() + temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) diff --git a/sklearn/grid_search.py b/sklearn/grid_search.py index 79dc6610f932f11fca1dd7c09fd68cd9ffdd2929..77ff71adf8349ffde3aa2aae049a8e3cbb5d42ff 100644 --- a/sklearn/grid_search.py +++ b/sklearn/grid_search.py @@ -389,7 +389,7 @@ class GridSearchCV(BaseEstimator, MetaEstimatorMixin): # Return early if there is only one grid point. if _has_one_grid_point(self.param_grid): - params = iter(grid).next() + params = next(iter(grid)) base_clf.set_params(**params) base_clf.fit(X, y) self._best_estimator_ = base_clf diff --git a/sklearn/tests/test_cross_validation.py b/sklearn/tests/test_cross_validation.py index b20cc9f3faeb41364dacf38b6137418abca6f9e8..13ed2f298fd73e682e169903e698f3c05e61ec64 100644 --- a/sklearn/tests/test_cross_validation.py +++ b/sklearn/tests/test_cross_validation.py @@ -6,20 +6,20 @@ from scipy.sparse import coo_matrix from nose.tools import assert_true, assert_equal from nose.tools import assert_raises - -from ..utils.testing import assert_greater, assert_less -from ..base import BaseEstimator -from ..datasets import make_regression -from ..datasets import load_iris -from ..metrics import zero_one_score -from ..metrics import f1_score -from ..metrics import mean_squared_error -from ..metrics import r2_score -from ..metrics import explained_variance_score -from ..svm import SVC -from ..linear_model import Ridge -from ..svm.sparse import SVC as SparseSVC -from .. import cross_validation as cval +from sklearn.utils.testing import assert_greater, assert_less + +from sklearn import cross_validation as cval +from sklearn.base import BaseEstimator +from sklearn.datasets import make_regression +from sklearn.datasets import load_iris +from sklearn.metrics import zero_one_score +from sklearn.metrics import f1_score +from sklearn.metrics import mean_squared_error +from sklearn.metrics import r2_score +from sklearn.metrics import explained_variance_score +from sklearn.svm import SVC +from sklearn.linear_model import Ridge +from sklearn.svm.sparse import SVC as SparseSVC from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal