diff --git a/scikits/learn/ann/mlp.py b/scikits/learn/ann/mlp.py index f1ad8b7fb4254c977e5086cc3ed911739168b012..b8449c5bce01da8290c34eea1f1864d9056ba8ad 100644 --- a/scikits/learn/ann/mlp.py +++ b/scikits/learn/ann/mlp.py @@ -118,7 +118,7 @@ class mlp: Returns: sum-squared-error over all data """ - return N.sum(self.errfxn(self.wp,x,t)) + return N.sum(self.errfxn(self.wp,x,t),axis=0) def main(): """ Build/train/test MLP diff --git a/scikits/learn/ann/rbf.py b/scikits/learn/ann/rbf.py index b3d692a1edb615a2adf9c2879b4bf475d1a779c1..0f5e5264cb585261cc7fc6f2650247b7b58a4cb9 100644 --- a/scikits/learn/ann/rbf.py +++ b/scikits/learn/ann/rbf.py @@ -86,7 +86,7 @@ class rbf: d_max = 0.0 for i in self.centers: for j in self.centers: - tmp = N.sum(N.sqrt((i-j)**2)) + tmp = N.sum(N.sqrt((i-j)**2),axis=0) if tmp > d_max: d_max = tmp self.variance = d_max/(2.0*len(X)) @@ -105,7 +105,7 @@ class rbf: Returns: sum-squared-error over all data """ - return N.sum(self.err_fxn(self.wp,X,Y)) + return N.sum(self.err_fxn(self.wp,X,Y),axis=0) def main(): """ Build/train/test RBF net diff --git a/scikits/learn/ann/srn.py b/scikits/learn/ann/srn.py index 77ef6f28090d38d5a0f3713906fda821b96d5752..7def3d46258d752760b83bf68a995dcc88205e84 100644 --- a/scikits/learn/ann/srn.py +++ b/scikits/learn/ann/srn.py @@ -136,7 +136,7 @@ class srn: Returns: sum-squared-error over all data """ - return N.sum(self.errfxn(self.wp,x,t)) + return N.sum(self.errfxn(self.wp,x,t),axis=0) def main():