diff --git a/sklearn/cluster/affinity_propagation_.py b/sklearn/cluster/affinity_propagation_.py index 1c9903dc2efe14b935fee37aef3c5c5a4f6403d7..53072e24c4ae2b38c1a1548a494bf6df155e4364 100644 --- a/sklearn/cluster/affinity_propagation_.py +++ b/sklearn/cluster/affinity_propagation_.py @@ -71,7 +71,8 @@ def affinity_propagation(S, preference=None, convergence_iter=15, max_iter=200, Notes ----- - See examples/cluster/plot_affinity_propagation.py for an example. + For an example, see :ref:`examples/cluster/plot_affinity_propagation.py + <sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`. References ---------- @@ -243,7 +244,8 @@ class AffinityPropagation(BaseEstimator, ClusterMixin): Notes ----- - See examples/cluster/plot_affinity_propagation.py for an example. + For an example, see :ref:`examples/cluster/plot_affinity_propagation.py + <sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`. The algorithmic complexity of affinity propagation is quadratic in the number of points. diff --git a/sklearn/cluster/dbscan_.py b/sklearn/cluster/dbscan_.py index 6c7bba5af9f8c9385370413bc4872c1d481cd727..115e534b448cbe445c7eeb7e8b7b35df6168acb9 100644 --- a/sklearn/cluster/dbscan_.py +++ b/sklearn/cluster/dbscan_.py @@ -89,7 +89,8 @@ def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', metric_params=None, Notes ----- - See examples/cluster/plot_dbscan.py for an example. + For an example, see :ref:`examples/cluster/plot_dbscan.py + <sphx_glr_auto_examples_cluster_plot_dbscan.py>`. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, @@ -228,7 +229,8 @@ class DBSCAN(BaseEstimator, ClusterMixin): Notes ----- - See examples/cluster/plot_dbscan.py for an example. + For an example, see :ref:`examples/cluster/plot_dbscan.py + <sphx_glr_auto_examples_cluster_plot_dbscan.py>`. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, diff --git a/sklearn/cluster/mean_shift_.py b/sklearn/cluster/mean_shift_.py index 928842f179da7af7583916dfaf4aaf0d6f2141cc..b1680fea3f2e7cbb50ccc80f30af0d78fb127c7b 100644 --- a/sklearn/cluster/mean_shift_.py +++ b/sklearn/cluster/mean_shift_.py @@ -172,7 +172,8 @@ def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, Notes ----- - See examples/cluster/plot_mean_shift.py for an example. + For an example, see :ref:`examples/cluster/plot_mean_shift.py + <sphx_glr_auto_examples_cluster_plot_mean_shift.py>`. """ diff --git a/sklearn/datasets/species_distributions.py b/sklearn/datasets/species_distributions.py index 518880534f08e17e83f14078e3c5a967c20b75de..556ad9ea45e0533df461804fe8f6fde376b9f06b 100644 --- a/sklearn/datasets/species_distributions.py +++ b/sklearn/datasets/species_distributions.py @@ -17,17 +17,19 @@ The two species are: also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. -References: +References +---------- - * `"Maximum entropy modeling of species geographic distributions" - <http://rob.schapire.net/papers/ecolmod.pdf>`_ - S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, - 190:231-259, 2006. +`"Maximum entropy modeling of species geographic distributions" +<http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, +R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. -Notes: +Notes +----- - * See examples/applications/plot_species_distribution_modeling.py - for an example of using this dataset +For an example of using this dataset, see +:ref:`examples/applications/plot_species_distribution_modeling.py +<sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> @@ -202,9 +204,9 @@ def fetch_species_distributions(data_home=None, Notes ----- - * See examples/applications/plot_species_distribution_modeling.py - for an example of using this dataset with scikit-learn - + * For an example of using this dataset with scikit-learn, see + :ref:`examples/applications/plot_species_distribution_modeling.py + <sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ data_home = get_data_home(data_home) if not exists(data_home): diff --git a/sklearn/linear_model/bayes.py b/sklearn/linear_model/bayes.py index be58fd2b854b893cba11d2fa831a010889c3ff6c..82153024e33a7698fa6599b408d12f029d25da32 100644 --- a/sklearn/linear_model/bayes.py +++ b/sklearn/linear_model/bayes.py @@ -110,7 +110,8 @@ class BayesianRidge(LinearModel, RegressorMixin): Notes ----- - See examples/linear_model/plot_bayesian_ridge.py for an example. + For an example, see :ref:`examples/linear_model/plot_bayesian_ridge.py + <sphx_glr_auto_examples_linear_model_plot_bayesian_ridge.py>`. References ---------- @@ -372,8 +373,9 @@ class ARDRegression(LinearModel, RegressorMixin): array([ 1.]) Notes - -------- - See examples/linear_model/plot_ard.py for an example. + ----- + For an example, see :ref:`examples/linear_model/plot_ard.py + <sphx_glr_auto_examples_linear_model_plot_ard.py>`. References ---------- diff --git a/sklearn/linear_model/coordinate_descent.py b/sklearn/linear_model/coordinate_descent.py index 0b950b26a624014f2abb4208b0379ce54fe6b351..6a1061f0a906a99d9b4ac661914e97b730ec1858 100644 --- a/sklearn/linear_model/coordinate_descent.py +++ b/sklearn/linear_model/coordinate_descent.py @@ -213,8 +213,9 @@ def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, Notes ----- - See examples/linear_model/plot_lasso_coordinate_descent_path.py - for an example. + For an example, see + :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py + <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. @@ -368,8 +369,9 @@ def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, Notes ----- - See examples/linear_model/plot_lasso_coordinate_descent_path.py for an - example. + For an example, see + :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py + <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. See also -------- @@ -1329,8 +1331,9 @@ class LassoCV(LinearModelCV, RegressorMixin): Notes ----- - See examples/linear_model/plot_lasso_model_selection.py - for an example. + For an example, see + :ref:`examples/linear_model/plot_lasso_model_selection.py + <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. @@ -1485,8 +1488,9 @@ class ElasticNetCV(LinearModelCV, RegressorMixin): Notes ----- - See examples/linear_model/plot_lasso_model_selection.py - for an example. + For an example, see + :ref:`examples/linear_model/plot_lasso_model_selection.py + <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. diff --git a/sklearn/linear_model/randomized_l1.py b/sklearn/linear_model/randomized_l1.py index ac5b89722488e93f5e89a5536037fdb34282dd3d..5ee0782b7f2a2f70748458b4789b5bb7c4a4976b 100644 --- a/sklearn/linear_model/randomized_l1.py +++ b/sklearn/linear_model/randomized_l1.py @@ -294,7 +294,8 @@ class RandomizedLasso(BaseRandomizedLinearModel): Notes ----- - See examples/linear_model/plot_sparse_recovery.py for an example. + For an example, see :ref:`examples/linear_model/plot_sparse_recovery.py + <sphx_glr_auto_examples_linear_model_plot_sparse_recovery.py>`. References ---------- @@ -486,7 +487,8 @@ class RandomizedLogisticRegression(BaseRandomizedLinearModel): Notes ----- - See examples/linear_model/plot_sparse_recovery.py for an example. + For an example, see :ref:`examples/linear_model/plot_sparse_recovery.py + <sphx_glr_auto_examples_linear_model_plot_sparse_recovery.py>`. References ---------- @@ -621,7 +623,8 @@ def lasso_stability_path(X, y, scaling=0.5, random_state=None, Notes ----- - See examples/linear_model/plot_sparse_recovery.py for an example. + For an example, see :ref:`examples/linear_model/plot_sparse_recovery.py + <sphx_glr_auto_examples_linear_model_plot_sparse_recovery.py>`. """ X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo']) rng = check_random_state(random_state) diff --git a/sklearn/preprocessing/data.py b/sklearn/preprocessing/data.py index 107656702bad95690f14c3bd225fd6614cfb17cf..c9de8a99a0f3d35fa99806bd4e262b8c8a338bd9 100644 --- a/sklearn/preprocessing/data.py +++ b/sklearn/preprocessing/data.py @@ -117,8 +117,9 @@ def scale(X, axis=0, with_mean=True, with_std=True, copy=True): To avoid memory copy the caller should pass a CSC matrix. - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- @@ -248,8 +249,9 @@ class MinMaxScaler(BaseEstimator, TransformerMixin): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, feature_range=(0, 1), copy=True): @@ -409,8 +411,9 @@ def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. @@ -506,8 +509,9 @@ class StandardScaler(BaseEstimator, TransformerMixin): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa def __init__(self, copy=True, with_mean=True, with_std=True): @@ -713,8 +717,9 @@ class MaxAbsScaler(BaseEstimator, TransformerMixin): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, copy=True): @@ -845,8 +850,9 @@ def maxabs_scale(X, axis=0, copy=True): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa # Unlike the scaler object, this function allows 1d input. @@ -939,7 +945,9 @@ class RobustScaler(BaseEstimator, TransformerMixin): Notes ----- - See examples/preprocessing/plot_all_scaling.py for an example. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. https://en.wikipedia.org/wiki/Median_(statistics) https://en.wikipedia.org/wiki/Interquartile_range @@ -1089,8 +1097,9 @@ def robust_scale(X, axis=0, with_centering=True, with_scaling=True, To avoid memory copy the caller should pass a CSR matrix. - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- @@ -1311,8 +1320,10 @@ def normalize(X, norm='l2', axis=1, copy=True, return_norm=False): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. + """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) @@ -1396,8 +1407,10 @@ class Normalizer(BaseEstimator, TransformerMixin): This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. + See also -------- @@ -2026,9 +2039,9 @@ class QuantileTransformer(BaseEstimator, TransformerMixin): Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. - + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, n_quantiles=1000, output_distribution='uniform', @@ -2410,9 +2423,9 @@ def quantile_transform(X, axis=0, n_quantiles=1000, Notes ----- - See examples/preprocessing/plot_all_scaling.py for a comparison of the - different scalers, transformers, and normalizers. - + For a comparison of the different scalers, transformers, and normalizers, + see :ref:`examples/preprocessing/plot_all_scaling.py + <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ n = QuantileTransformer(n_quantiles=n_quantiles, output_distribution=output_distribution,