diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index ed00de58f4bddafc88ee11930e6592509971925b..9565426ad6f19863acaeb24213f692ffb35f86dc 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -263,6 +263,18 @@ dictionary fixed, and then updating the dictionary to best fit the sparse code. \text{subject to\,} & ||V_k||_2 = 1 \text{ for all } 0 \leq k < n_{atoms} + +.. |pca_img| image:: ../auto_examples/decomposition/images/plot_faces_decomposition_2.png + :target: ../auto_examples/decomposition/plot_faces_decomposition.html + :scale: 60% + +.. |dict_img| image:: ../auto_examples/decomposition/images/plot_faces_decomposition_6.png + :target: ../auto_examples/decomposition/plot_faces_decomposition.html + :scale: 60% + +.. centered:: |pca_img| |dict_img| + + After using such a procedure to fit the dictionary, the fitted object can be used to transform new data. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear combination of as few @@ -310,12 +322,6 @@ extracted from part of the image of Lena looks like. :scale: 50% -.. figure:: ../auto_examples/decomposition/images/plot_faces_decomposition_6.png - :target: ../auto_examples/decomposition/plot_faces_decomposition.html - :align: center - :scale: 50% - - .. topic:: Examples: * :ref:`example_decomposition_plot_image_denoising.py`