diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index db2493b16a99e3d5354fa66bc594349dd61cc977..c54417586153c4c6222c6ad8540b2673a5f8ef09 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -6,7 +6,7 @@ Model evaluation: quantifying the quality of predictions ======================================================== -There are 3 different APIs for evaluating the quality of of a model's +There are 3 different APIs for evaluating the quality of a model's predictions: * **Estimator score method**: Estimators have a ``score`` method providing a @@ -1121,7 +1121,7 @@ predictions. BS = \frac{1}{N} \sum_{t=1}^{N}(f_t - o_t)^2 where : :math:`N` is the total number of predictions, :math:`f_t` is the -predicted probablity of the actual outcome :math:`o_t`. +predicted probability of the actual outcome :math:`o_t`. Here is a small example of usage of this function::: diff --git a/sklearn/metrics/cluster/tests/test_supervised.py b/sklearn/metrics/cluster/tests/test_supervised.py index c5678bc8162b4f3e762c31e899666cab92a68fdd..e2ebfd724f95c07303d9dde8db97c9f0c544eabb 100644 --- a/sklearn/metrics/cluster/tests/test_supervised.py +++ b/sklearn/metrics/cluster/tests/test_supervised.py @@ -251,14 +251,14 @@ def test_fowlkes_mallows_score_properties(): score_original = fowlkes_mallows_score(labels_a, labels_b) assert_almost_equal(score_original, expected) - # symetric property - score_symetric = fowlkes_mallows_score(labels_b, labels_a) - assert_almost_equal(score_symetric, expected) + # symmetric property + score_symmetric = fowlkes_mallows_score(labels_b, labels_a) + assert_almost_equal(score_symmetric, expected) # permutation property score_permuted = fowlkes_mallows_score((labels_a + 1) % 3, labels_b) assert_almost_equal(score_permuted, expected) - # symetric and permutation(both together) + # symmetric and permutation(both together) score_both = fowlkes_mallows_score(labels_b, (labels_a + 2) % 3) assert_almost_equal(score_both, expected)