diff --git a/scikits/learn/datasets/samples_generator/linear.py b/scikits/learn/datasets/samples_generator/linear.py index cf649ea5a06a19fd4d5c5ab0865eff8214a4ddda..966bcd84b72a190ecca56e6ac710cafe30f7d652 100755 --- a/scikits/learn/datasets/samples_generator/linear.py +++ b/scikits/learn/datasets/samples_generator/linear.py @@ -1,7 +1,7 @@ import numpy as np import numpy.random as nr -def sparse_uncorrelated(nb_samples=100,nb_features=10): +def sparse_uncorrelated(nb_samples=100, nb_features=10): """ Function creating simulated data with sparse uncorrelated design. (cf.Celeux et al. 2009, Bayesian regularization in regression) @@ -15,14 +15,13 @@ def sparse_uncorrelated(nb_samples=100,nb_features=10): number of samples (defaut is 100). nb_features : int number of features (defaut is 10). - + Returns ------- - X : numpy array of shape (nb_samples,nb_features) - simulated samples. - Y : numpy array of shape (nb_samples) + X : numpy array of shape (nb_samples, nb_features) for input samples + Y : numpy array of shape (nb_samples) for labels """ - X = nr.normal(loc=0,scale=1,size=(nb_samples,nb_features)) - Y = nr.normal(loc=X[:,2]+2*X[:,3]-2*X[:,6]-1.5*X[:,7], - scale=np.ones(nb_samples)) - return X,Y \ No newline at end of file + X = nr.normal(loc=0, scale=1, size=(nb_samples, nb_features)) + Y = nr.normal(loc=X[:, 2] + 2 * X[:, 3] - 2 * X[:,6] - 1.5 * X[:, 7], + scale = np.ones(nb_samples)) + return X, Y