From 51d4310c6feeb1ace394cc577dac06f22b6e1a75 Mon Sep 17 00:00:00 2001
From: Lars Buitinck <L.J.Buitinck@uva.nl>
Date: Fri, 21 Oct 2011 13:58:08 +0200
Subject: [PATCH] COSMIT rename safe_asanyarray to safe_asarray to prevent
 confusion

---
 doc/developers/index.rst                          | 11 +----------
 sklearn/cluster/affinity_propagation_.py          |  1 +
 sklearn/feature_selection/univariate_selection.py |  6 +++---
 sklearn/linear_model/base.py                      |  6 +++---
 sklearn/linear_model/ridge.py                     |  6 +++---
 sklearn/metrics/pairwise.py                       |  8 ++++----
 sklearn/naive_bayes.py                            |  4 ++--
 sklearn/neighbors/base.py                         |  4 ++--
 sklearn/svm/base.py                               |  4 ++--
 sklearn/utils/__init__.py                         |  4 ++--
 sklearn/utils/tests/test___init__.py              |  8 ++++----
 11 files changed, 27 insertions(+), 35 deletions(-)

diff --git a/doc/developers/index.rst b/doc/developers/index.rst
index a6824be432..19bbf8ae05 100644
--- a/doc/developers/index.rst
+++ b/doc/developers/index.rst
@@ -276,7 +276,7 @@ Input validation
 
 The module ``sklearn.utils`` contains various functions for doing input
 validation/conversion. Sometimes, ``np.atleast_2d`` suffices for validation;
-in other cases, be sure to call ``safe_asanyarray``, ``atleast2d_or_csr`` or
+in other cases, be sure to call ``safe_asarray``, ``atleast2d_or_csr`` or
 ``as_float_array`` on any array-like argument passed to a scikit-learn API
 function.
 
@@ -430,15 +430,6 @@ you call ``fit`` a second time without taking any previous value into
 account: **fit should be idempotent**.
 
 
-Python tuples
-^^^^^^^^^^^^^
-
-In addition to numpy arrays, all methods should be able to accept
-Python tuples as arguments. In practice, this means you should call
-``numpy.asanyarray`` at the beginning at each public method that accepts
-arrays.
-
-
 Optional Arguments
 ^^^^^^^^^^^^^^^^^^
 
diff --git a/sklearn/cluster/affinity_propagation_.py b/sklearn/cluster/affinity_propagation_.py
index eceb412c69..e84b138d2c 100644
--- a/sklearn/cluster/affinity_propagation_.py
+++ b/sklearn/cluster/affinity_propagation_.py
@@ -10,6 +10,7 @@ clustering.
 import numpy as np
 
 from ..base import BaseEstimator
+from ..utils import as_float_array
 
 
 def affinity_propagation(S, p=None, convit=30, max_iter=200, damping=0.5,
diff --git a/sklearn/feature_selection/univariate_selection.py b/sklearn/feature_selection/univariate_selection.py
index a553d36a08..f839c5ea92 100644
--- a/sklearn/feature_selection/univariate_selection.py
+++ b/sklearn/feature_selection/univariate_selection.py
@@ -13,7 +13,7 @@ from scipy.sparse import issparse
 
 from ..base import BaseEstimator, TransformerMixin
 from ..preprocessing import LabelBinarizer
-from ..utils import safe_asanyarray
+from ..utils import safe_asarray
 from ..utils.extmath import safe_sparse_dot
 
 ######################################################################
@@ -146,7 +146,7 @@ def chi2(X, y):
 
     # XXX: we might want to do some of the following in logspace instead for
     # numerical stability.
-    X = safe_asanyarray(X)
+    X = safe_asarray(X)
     Y = LabelBinarizer().fit_transform(y)
     if Y.shape[1] == 1:
         Y = np.append(1 - Y, Y, axis=1)
@@ -248,7 +248,7 @@ class _AbstractUnivariateFilter(BaseEstimator, TransformerMixin):
         """
         Transform a new matrix using the selected features
         """
-        return safe_asanyarray(X)[:, self.get_support(indices=issparse(X))]
+        return safe_asarray(X)[:, self.get_support(indices=issparse(X))]
 
     def inverse_transform(self, X):
         """
diff --git a/sklearn/linear_model/base.py b/sklearn/linear_model/base.py
index ba29aef268..2bbf2ba8f0 100644
--- a/sklearn/linear_model/base.py
+++ b/sklearn/linear_model/base.py
@@ -19,7 +19,7 @@ from ..base import RegressorMixin
 from ..base import ClassifierMixin
 from ..base import TransformerMixin
 from ..utils.extmath import safe_sparse_dot
-from ..utils import as_float_array, safe_asanyarray
+from ..utils import as_float_array, safe_asarray
 from ..utils import atleast2d_or_csr, check_arrays
 
 from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber
@@ -49,7 +49,7 @@ class LinearModel(BaseEstimator, RegressorMixin):
         C : array, shape = [n_samples]
             Returns predicted values.
         """
-        X = safe_asanyarray(X)
+        X = safe_asarray(X)
         return safe_sparse_dot(X, self.coef_.T) + self.intercept_
 
     @staticmethod
@@ -355,7 +355,7 @@ class BaseSGDClassifier(BaseSGD, ClassifierMixin):
         -------
         self : returns an instance of self.
         """
-        X = safe_asanyarray(X)
+        X = safe_asarray(X)
         y = np.asarray(y, dtype=np.float64, order='C')
 
         n_samples, n_features = X.shape
diff --git a/sklearn/linear_model/ridge.py b/sklearn/linear_model/ridge.py
index 388d94af1d..ee11e55de1 100644
--- a/sklearn/linear_model/ridge.py
+++ b/sklearn/linear_model/ridge.py
@@ -9,7 +9,7 @@ import numpy as np
 
 from .base import LinearModel
 from ..utils.extmath import safe_sparse_dot
-from ..utils import safe_asanyarray
+from ..utils import safe_asarray
 from ..preprocessing import LabelBinarizer
 from ..grid_search import GridSearchCV
 
@@ -201,7 +201,7 @@ class Ridge(LinearModel):
         -------
         self : returns an instance of self.
         """
-        X = safe_asanyarray(X, dtype=np.float)
+        X = safe_asarray(X, dtype=np.float)
         y = np.asarray(y, dtype=np.float)
 
         X, y, X_mean, y_mean, X_std = \
@@ -394,7 +394,7 @@ class _RidgeGCV(LinearModel):
         -------
         self : Returns self.
         """
-        X = safe_asanyarray(X, dtype=np.float)
+        X = safe_asarray(X, dtype=np.float)
         y = np.asarray(y, dtype=np.float)
 
         n_samples = X.shape[0]
diff --git a/sklearn/metrics/pairwise.py b/sklearn/metrics/pairwise.py
index ccf1476e04..00f4930f83 100644
--- a/sklearn/metrics/pairwise.py
+++ b/sklearn/metrics/pairwise.py
@@ -37,7 +37,7 @@ kernel:
 import numpy as np
 from scipy.spatial import distance
 from scipy.sparse import csr_matrix, issparse
-from ..utils import safe_asanyarray, atleast2d_or_csr, deprecated
+from ..utils import safe_asarray, atleast2d_or_csr, deprecated
 from ..utils.extmath import safe_sparse_dot
 
 
@@ -71,10 +71,10 @@ def check_pairwise_arrays(X, Y):
 
     """
     if Y is X or Y is None:
-        X = Y = safe_asanyarray(X)
+        X = Y = safe_asarray(X)
     else:
-        X = safe_asanyarray(X)
-        Y = safe_asanyarray(Y)
+        X = safe_asarray(X)
+        Y = safe_asarray(Y)
     X = atleast2d_or_csr(X)
     Y = atleast2d_or_csr(Y)
     if len(X.shape) < 2:
diff --git a/sklearn/naive_bayes.py b/sklearn/naive_bayes.py
index 0ce352eafa..30e8a6e93e 100644
--- a/sklearn/naive_bayes.py
+++ b/sklearn/naive_bayes.py
@@ -25,7 +25,7 @@ from scipy.sparse import issparse
 
 from .base import BaseEstimator, ClassifierMixin
 from .preprocessing import binarize, LabelBinarizer
-from .utils import safe_asanyarray, atleast2d_or_csr
+from .utils import safe_asarray, atleast2d_or_csr
 from .utils.extmath import safe_sparse_dot, logsum
 from .utils.fixes import unique
 
@@ -230,7 +230,7 @@ class BaseDiscreteNB(BaseNB):
             Returns self.
         """
         X = atleast2d_or_csr(X)
-        y = safe_asanyarray(y)
+        y = safe_asarray(y)
 
         if X.shape[0] != y.shape[0]:
             msg = "X and y have incompatible shapes."
diff --git a/sklearn/neighbors/base.py b/sklearn/neighbors/base.py
index fd5bfe7dfe..87c3407c99 100644
--- a/sklearn/neighbors/base.py
+++ b/sklearn/neighbors/base.py
@@ -14,7 +14,7 @@ from scipy.spatial.ckdtree import cKDTree
 from .ball_tree import BallTree
 from ..base import BaseEstimator
 from ..metrics import euclidean_distances
-from ..utils import safe_asanyarray, atleast2d_or_csr
+from ..utils import safe_asarray, atleast2d_or_csr
 
 
 def warn_equidistant():
@@ -104,7 +104,7 @@ class NeighborsBase(BaseEstimator):
             self._fit_method = 'kd_tree'
             return self
 
-        X = safe_asanyarray(X)
+        X = safe_asarray(X)
 
         if X.ndim != 2:
             raise ValueError("data type not understood")
diff --git a/sklearn/svm/base.py b/sklearn/svm/base.py
index d8ebcf11b1..a8575f9055 100644
--- a/sklearn/svm/base.py
+++ b/sklearn/svm/base.py
@@ -2,7 +2,7 @@ import numpy as np
 
 from . import libsvm, liblinear
 from ..base import BaseEstimator
-from ..utils import safe_asanyarray
+from ..utils import safe_asarray
 
 
 LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr']
@@ -383,7 +383,7 @@ class BaseLibLinear(BaseEstimator):
         self.class_weight, self.class_weight_label = \
                      _get_class_weight(class_weight, y)
 
-        X = safe_asanyarray(X, dtype=np.float64, order='C')
+        X = safe_asarray(X, dtype=np.float64, order='C')
         if not isinstance(X, np.ndarray):   # sparse X passed in by user
             raise ValueError("Training vectors should be array-like, not %s"
                              % type(X))
diff --git a/sklearn/utils/__init__.py b/sklearn/utils/__init__.py
index bbe776686c..3e329385d1 100644
--- a/sklearn/utils/__init__.py
+++ b/sklearn/utils/__init__.py
@@ -15,7 +15,7 @@ def assert_all_finite(X):
             raise ValueError("array contains NaN or infinity")
 
 
-def safe_asanyarray(X, dtype=None, order=None):
+def safe_asarray(X, dtype=None, order=None):
     """Convert X to an array or sparse matrix.
     Prevents copying X when possible; sparse matrices are passed through."""
     if not sp.issparse(X):
@@ -47,7 +47,7 @@ def as_float_array(X, copy=True):
     if isinstance(X, np.matrix):
         X = X.A
     elif not isinstance(X, np.ndarray) and not sp.issparse(X):
-        return safe_asanyarray(X, dtype=np.float64)
+        return safe_asarray(X, dtype=np.float64)
     if X.dtype in [np.float32, np.float64]:
         return X.copy() if copy else X
     if X.dtype == np.int32:
diff --git a/sklearn/utils/tests/test___init__.py b/sklearn/utils/tests/test___init__.py
index 9db225327c..69a1305f36 100644
--- a/sklearn/utils/tests/test___init__.py
+++ b/sklearn/utils/tests/test___init__.py
@@ -1,7 +1,7 @@
 import numpy as np
 import scipy.sparse as sp
 
-from .. import as_float_array, atleast2d_or_csr, safe_asanyarray
+from .. import as_float_array, atleast2d_or_csr, safe_asarray
 
 
 def test_as_float_array():
@@ -39,6 +39,6 @@ def test_np_matrix():
     assert not isinstance(atleast2d_or_csr(np.matrix(X)), np.matrix)
     assert not isinstance(atleast2d_or_csr(sp.csc_matrix(X)), np.matrix)
 
-    assert not isinstance(safe_asanyarray(X), np.matrix)
-    assert not isinstance(safe_asanyarray(np.matrix(X)), np.matrix)
-    assert not isinstance(safe_asanyarray(sp.lil_matrix(X)), np.matrix)
+    assert not isinstance(safe_asarray(X), np.matrix)
+    assert not isinstance(safe_asarray(np.matrix(X)), np.matrix)
+    assert not isinstance(safe_asarray(sp.lil_matrix(X)), np.matrix)
-- 
GitLab