From 4d1dcd2e65587fae7f6e36deb42834425f2cac8c Mon Sep 17 00:00:00 2001 From: Gael varoquaux <gael.varoquaux@normalesup.org> Date: Sat, 3 Sep 2011 09:10:05 +0200 Subject: [PATCH] DOC: scikits.learn -> sklearn --- doc/datasets/index.rst | 8 ++++---- doc/datasets/labeled_faces.rst | 4 ++-- doc/datasets/labeled_faces_fixture.py | 2 +- doc/datasets/mldata.rst | 6 +++--- doc/datasets/mldata_fixture.py | 4 ++-- doc/datasets/twenty_newsgroups.rst | 12 ++++++------ doc/developers/performance.rst | 12 ++++++------ examples/cluster/README.txt | 2 +- examples/covariance/README.txt | 2 +- examples/decomposition/README.txt | 2 +- examples/gaussian_process/README.txt | 2 +- .../gaussian_process/gp_diabetes_dataset.py | 2 +- examples/linear_model/README.txt | 2 +- examples/manifold/README.txt | 2 +- examples/manifold/plot_lle_digits.py.prof | Bin 91205 -> 0 bytes examples/mixture/README.txt | 2 +- examples/svm/README.txt | 2 +- setup.py | 2 +- 18 files changed, 34 insertions(+), 34 deletions(-) delete mode 100644 examples/manifold/plot_lle_digits.py.prof diff --git a/doc/datasets/index.rst b/doc/datasets/index.rst index 18c66b8975..96ea729f81 100644 --- a/doc/datasets/index.rst +++ b/doc/datasets/index.rst @@ -3,7 +3,7 @@ >>> import numpy as np >>> import os - >>> from scikits.learn import datasets + >>> from sklearn import datasets >>> datasets.mldata.urllib2 = mock_urllib2 .. _datasets: @@ -12,9 +12,9 @@ Dataset loading utilities ========================= -.. currentmodule:: scikits.learn.datasets +.. currentmodule:: sklearn.datasets -The ``scikits.learn.datasets`` package embeds some small toy datasets +The ``sklearn.datasets`` package embeds some small toy datasets as introduced in the "Getting Started" section. To evaluate the impact of the scale of the dataset (``n_samples`` and @@ -108,7 +108,7 @@ Scipy sparse CSR matrices are used for ``X`` and numpy arrays are used for ``y`` You may load a dataset like this:: - >>> from scikits.learn.datasets import load_svmlight_file + >>> from sklearn.datasets import load_svmlight_file >>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt") ... # doctest: +SKIP diff --git a/doc/datasets/labeled_faces.rst b/doc/datasets/labeled_faces.rst index 89673b4cd2..7f86da507c 100644 --- a/doc/datasets/labeled_faces.rst +++ b/doc/datasets/labeled_faces.rst @@ -39,7 +39,7 @@ less than 200ms by using a memmaped version memoized on the disk in the The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):: - >>> from scikits.learn.datasets import fetch_lfw_people + >>> from sklearn.datasets import fetch_lfw_people >>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) >>> for name in lfw_people.target_names: @@ -74,7 +74,7 @@ array:: The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not to the same person:: - >>> from scikits.learn.datasets import fetch_lfw_pairs + >>> from sklearn.datasets import fetch_lfw_pairs >>> lfw_pairs_train = fetch_lfw_pairs(subset='train') >>> list(lfw_pairs_train.target_names) diff --git a/doc/datasets/labeled_faces_fixture.py b/doc/datasets/labeled_faces_fixture.py index ac15044f1c..0d13c8ddd8 100644 --- a/doc/datasets/labeled_faces_fixture.py +++ b/doc/datasets/labeled_faces_fixture.py @@ -6,7 +6,7 @@ and cached in the past. from os.path import exists from os.path import join from nose import SkipTest -from scikits.learn.datasets import get_data_home +from sklearn.datasets import get_data_home def setup_module(module): diff --git a/doc/datasets/mldata.rst b/doc/datasets/mldata.rst index 12d824b2a2..65b10b3013 100644 --- a/doc/datasets/mldata.rst +++ b/doc/datasets/mldata.rst @@ -4,12 +4,12 @@ Downloading datasets from the mldata.org repository `mldata.org <http://mldata.org>`_ is a public repository for machine learning data, supported by the `PASCAL network <http://www.pascal-network.org>`_ . -The ``scikits.learn.datasets`` package is able to directly download data +The ``sklearn.datasets`` package is able to directly download data sets from the repository using the function ``fetch_mldata(dataname)``. For example, to download the MNIST digit recognition database:: - >>> from scikits.learn.datasets import fetch_mldata + >>> from sklearn.datasets import fetch_mldata >>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home) The MNIST database contains a total of 70000 examples of handwritten digits @@ -36,7 +36,7 @@ datasets: * The data arrays in `mldata.org <http://mldata.org>`_ are most often shaped as ``(n_features, n_samples)``. This is the opposite of the - ``scikits.learn`` convention, so ``fetch_mldata`` transposes the matrix + ``scikit-learn`` convention, so ``fetch_mldata`` transposes the matrix by default. The ``transpose_data`` keyword controls this behavior:: >>> iris = fetch_mldata('iris', data_home=custom_data_home) diff --git a/doc/datasets/mldata_fixture.py b/doc/datasets/mldata_fixture.py index 192daa4af5..2267288c38 100644 --- a/doc/datasets/mldata_fixture.py +++ b/doc/datasets/mldata_fixture.py @@ -5,8 +5,8 @@ Mock urllib2 access to mldata.org from os import makedirs from os.path import join -from scikits.learn import datasets -from scikits.learn.utils.testing import mock_urllib2 +from sklearn import datasets +from sklearn.utils.testing import mock_urllib2 import tempfile import scipy as sp import shutil diff --git a/doc/datasets/twenty_newsgroups.rst b/doc/datasets/twenty_newsgroups.rst index 13fd2f1955..c4fd379e21 100644 --- a/doc/datasets/twenty_newsgroups.rst +++ b/doc/datasets/twenty_newsgroups.rst @@ -13,21 +13,21 @@ provides a version where the data is already vectorized. This is not the case for this loader. Instead, it returns the list of the raw text files that can be fed to text feature extractors such as -:class:`scikits.learn.feature_extraction.text.Vectorizer` with custom +:class:`sklearn.feature_extraction.text.Vectorizer` with custom parameters so as to extract feature vectors. Usage ----- -The ``scikits.learn.datasets.fetch_20newsgroups`` function is a data +The ``sklearn.datasets.fetch_20newsgroups`` function is a data fetching / caching functions that downloads the data archive from the original `20 newsgroups website`_, extracts the archive contents in the ``~/scikit_learn_data/20news_home`` folder and calls the -``scikits.learn.datasets.load_file`` on either the training or +``sklearn.datasets.load_file`` on either the training or testing set folder, or both of them:: - >>> from scikits.learn.datasets import fetch_20newsgroups + >>> from sklearn.datasets import fetch_20newsgroups >>> newsgroups_train = fetch_20newsgroups(subset='train') >>> from pprint import pprint @@ -81,11 +81,11 @@ list of the categories to load to the ``fetch_20newsgroups`` function:: In order to feed predictive or clustering models with the text data, one first need to turn the text into vectors of numerical values suitable for statistical analysis. This can be achieved with the utilities of the -``scikits.learn.feature_extraction.text`` as demonstrated in the following +``sklearn.feature_extraction.text`` as demonstrated in the following example that extract `TF-IDF`_ vectors of unigram tokens:: - >>> from scikits.learn.feature_extraction.text import Vectorizer + >>> from sklearn.feature_extraction.text import Vectorizer >>> documents = [open(f).read() for f in newsgroups_train.filenames] >>> vectorizer = Vectorizer() >>> vectors = vectorizer.fit_transform(documents) diff --git a/doc/developers/performance.rst b/doc/developers/performance.rst index 250e0e82df..d962348e6d 100644 --- a/doc/developers/performance.rst +++ b/doc/developers/performance.rst @@ -26,7 +26,7 @@ code for the scikit-learn project. Python, Cython or C/C++? ======================== -.. currentmodule:: scikits.learn +.. currentmodule:: sklearn In general, the scikit-learn project emphasizes the **readability** of the source code to make it easy for the project users to dive into the @@ -89,9 +89,9 @@ Suppose we want to profile the Non Negative Matrix Factorization module of the scikit. Let us setup a new IPython session and load the digits dataset and as in the :ref:`example_decomposition_plot_nmf.py` example:: - In [1]: from scikits.learn.decomposition import NMF + In [1]: from sklearn.decomposition import NMF - In [2]: from scikits.learn.datasets import load_digits + In [2]: from sklearn.datasets import load_digits In [3]: X = load_digits().data @@ -188,16 +188,16 @@ Towards the end of the file, define the ``%lprun`` magic:: Now restart IPython and let us use this new toy:: - In [1]: from scikits.learn.datasets import load_digits + In [1]: from sklearn.datasets import load_digits - In [2]: from scikits.learn.decomposition.nmf import _nls_subproblem, NMF + In [2]: from sklearn.decomposition.nmf import _nls_subproblem, NMF In [3]: X = load_digits().data In [4]: %lprun -f _nls_subproblem NMF(n_components=16, tol=1e-2).fit(X) Timer unit: 1e-06 s - File: scikits/learn/decomposition/nmf.py + File: sklearn/decomposition/nmf.py Function: _nls_subproblem at line 137 Total time: 1.73153 s diff --git a/examples/cluster/README.txt b/examples/cluster/README.txt index 767b917d2b..1b38bab9cb 100644 --- a/examples/cluster/README.txt +++ b/examples/cluster/README.txt @@ -3,5 +3,5 @@ Clustering ---------- -Examples concerning the `scikits.learn.cluster` package. +Examples concerning the `sklearn.cluster` package. diff --git a/examples/covariance/README.txt b/examples/covariance/README.txt index 5160f8bb61..0767f1031d 100644 --- a/examples/covariance/README.txt +++ b/examples/covariance/README.txt @@ -1,4 +1,4 @@ Covariance estimation --------------------- -Examples concerning the `scikits.learn.covariance` package. +Examples concerning the `sklearn.covariance` package. diff --git a/examples/decomposition/README.txt b/examples/decomposition/README.txt index c2bd41efe0..b5f710c810 100644 --- a/examples/decomposition/README.txt +++ b/examples/decomposition/README.txt @@ -3,5 +3,5 @@ Decomposition ------------- -Examples concerning the `scikits.learn.decomposition` package. +Examples concerning the `sklearn.decomposition` package. diff --git a/examples/gaussian_process/README.txt b/examples/gaussian_process/README.txt index c749e7a7e9..216660e8ac 100644 --- a/examples/gaussian_process/README.txt +++ b/examples/gaussian_process/README.txt @@ -3,5 +3,5 @@ Gaussian Process for Machine Learning ------------------------------------- -Examples concerning the `scikits.learn.gaussian_process` package. +Examples concerning the `sklearn.gaussian_process` package. diff --git a/examples/gaussian_process/gp_diabetes_dataset.py b/examples/gaussian_process/gp_diabetes_dataset.py index f3d1e46cdf..fbf0b791b6 100644 --- a/examples/gaussian_process/gp_diabetes_dataset.py +++ b/examples/gaussian_process/gp_diabetes_dataset.py @@ -27,7 +27,7 @@ from sklearn import datasets from sklearn.gaussian_process import GaussianProcess from sklearn.cross_val import cross_val_score, KFold -# Load the dataset from scikits' data sets +# Load the dataset from scikit's data sets diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target diff --git a/examples/linear_model/README.txt b/examples/linear_model/README.txt index 77439a5aa1..d70d3bed9d 100644 --- a/examples/linear_model/README.txt +++ b/examples/linear_model/README.txt @@ -2,4 +2,4 @@ Generalized Linear Models ------------------------- -Examples concerning the `scikits.learn.linear_model` package. +Examples concerning the `sklearn.linear_model` package. diff --git a/examples/manifold/README.txt b/examples/manifold/README.txt index 42a5dfcca7..13a9ed3bbe 100644 --- a/examples/manifold/README.txt +++ b/examples/manifold/README.txt @@ -3,5 +3,5 @@ Manifold learning ----------------------- -Examples concerning the `scikits.learn.manifold` package. +Examples concerning the `sklearn.manifold` package. diff --git a/examples/manifold/plot_lle_digits.py.prof b/examples/manifold/plot_lle_digits.py.prof deleted file mode 100644 index 2d30366716f99aa15baa8284df16ef3f2900d2b0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 91205 zcmZQzU|?Vd5ey6r0_qS3BLf420|Ns?(4XUzc5ga2>Hq)#|0Nl;86GNWGi*@RX3)^r zX6WCg!LZa#j$xmuCPRR?Cd1uHnhfbvG#O&Jv>E=0X*0+wYco`;YBLlQsrI;rHiND) zapsbumJ~OD)FS&077p8`lo?>*z&A~qf!j-)K{Y~~VP!CcuEs+9#%eR%ksMy(@G0m7 zJUxKY0(y86N(;zgOD(muN{=AFp{HF~dWh3M1rLW1MMNA^+kY^#Nlov>xC3T3Hh;qM zvuYJ2U;7k8Xc!+94mJ!740%Z9gKF{VNqY~Uo+L0WoY8%A2qUO$u>T#**sxj!Tu!WW z3}H-n(PsE8OImm#yOUIZ;ZhIt2fDvte6?6bu$!I#=`e6|=rU}RXJBAuU|<0G8&obL zmj~i1x(qK>bQxASsW2D?XfsTpVp)JMZqUnGQql-1YO%Qi6b_aQ3=Hzq5ar^Wi^>eC zg_;b{svsCtAHc#B-L2Tngrzx3)zTu)L1~?Rf)czA=$fL$pj#%-uqp_WFJS%z(IEdL z`yC{Pj}P;2-ZVXMn(JR8$FNimGmn767Gw@gJ*bW)CT~!Z)-4zq7z(`<;r=d1i(8mq zVfm#jM;`2l@PjH0uzbHg3KB*zcMnE?S~D;(EKtyc`;*yHkHN%SkKv%d9ym>d!W|Zm zFn@r;AJ)dfmFAGu5))UXs;4AwLFE{7`);|~sY%kyb;14x#q0831%^e2nhYSi@`WP9 z-ZzRUaSBp{94@f%fzjw`qCOFlHqg@pC>&v7Luy@4YPe&o&q3uFa=S)+0cIG${EF_U zp_b0gakS|{<uR_X1jQ%J{~$If&SB|vFy>`Yx?Z#h(LM`DicgR~$W6~MzoVyt!J4i? z;qb2u(O%CDJ~3&|Nm&N|-`WhBMUXNX<|kNug7PA$Ov9HCVR~RRx?WIPLeFQo>UL7v zA*85<xdGHp0fhr{dkxlq3k^Z^-N@~$!R(=SUzikgi3t~2IH0G8u9k&UUbZZnvZiU# zlzUSaO{x93aLNy_2mRJ;5Bt{zKIk{z^PqoG(}_vKt92MGk=pLW*a=HZ$bJE}VL*8h zxeURk4%Bxb)ITIPje+ckm2IGK0F{A+%6pLe(DOOSJ?$4Y!1W_Y9+vJ0YZ-{_M^gLh z`0_u@-}Hz#V&WLqc0i72Q2GJIH7M^}=^^TZ*b&yg0hPP3aM;fA|37RDD{1kGN#|ys znB+L~#H1@)dJM}g^ca|fFx$GYG9E^w$2}?K04ZugaY;<vgX$`fT3G%D#XBgUg8U82 zqsZ-JSU4cJd0}Ik_{>1}GqGx6>5|yI1XE9}`K0(AIV`Y+1E}r4|DzUz19XfR<OWj0 zpB8FKNiU?Rh4~E@4qixO7@%?8Gy>x{q}WA@T9~_tZA%c7=8@wamWN^W8f<I}6b|Tp zpfnb3cs&Qw2dlGTdO>*%xh{mMfvJP#nZZ~$+A=UO;Oig2`~dP3sILI(1H;5%{vWF2 z9H9CTxh)JDyHr)xWw;Qi$ROx|zfS;4pSaQ-EWSZ)0$4dV*vdUne1h@=D7}Nifyond zTniS@AhpPBkUo$YJ{ma;KxH$r{s*ZgHf&*Pi7jvOl|P_4KTum3UtWOu7h70>#6TFN z2Ilv{nBPHheQw9YepuV5F#bWmYs!QEHJK0ki?bf|U&?;a|9=-|Kd0UnQU;>?5tPPZ z@jyy`AT^FjF&kezgW?93=9PAm9u6SClA4x@O`o7Jp|)CB`2#W=Jq$tNz{SA8@Rm;( zKGw?;pu+G@N|zx^RhOafjW$Cn8<zPV9BpU&2Z{_a5s+~NY;(a2V-Rz|gyIN!-kcP* zAb*k)hUj5}t*s2o)97ty&=`3a(tKYg(!3`r_R~r&IsO9q6IQ3g+C%7beGP1ge$(S5 z6^5Cjsti2PInCGZatwz|A@wFGpCQK~C|+>630W<2dL<=n=w&u2&w$EM^zj5@%LG#W zN2+>I`9zPfhJ{0~x+c8r0M!j33`$3!_5m(7OdcBzOMmEXYUDIRiXTC0@x=|uoyhLM zW)Hq}2nq)?1_lOf<0`QBGRS<GzhG@;T>cxZZ3gsqGV&Zha#@c)c1%pZ1jP}tX%?gw zUwo1pf9PctuDAxpGbrC<8!sW%J*0#QF884OlaxA=6t$puL3RTu9IO}^7?9IL(k@ws z?nAN+GmoRrr=YtLWEL@gM=tZIr5?Hd2IWU|J}iIYs`rrn3+pGA^(ZmKNpdlC2XZlN zjO1c?Q;t~cfz9v8;RwqAu(k%eT2kVN6t$r6C)N!hwa8%)ig#`X28QQ-h;<)v6O<UH zPE}&ayspG>|BV*IWE|~9<g)Px+PE6B9r(fo-97l!;>(YemiNfz1+ihz#K6D+YA>R< z8K~ta<n%*o-T{@T_}qb>Ptf^<@(s4~65YOs3*{KR&9oWREwmX5PRKKOe&l38UK@um zK9T)S$S=rhk;94HJb^0>BAX4$H@NBz^l-ps9>`y`4g-Aoupi4DIV|2`?HNMz{@B6+ zG|o=VH8$vZn^ZT_Bb;I35Pcsp-Ug~SKy?yw`UJU!*z|#%-e{SYscAMS96;;okk?Ft z<{Lok$dT8Nlhd9=4i9|k8djDQqaMB7L+8WN8n*U>AsOq8kkbM&?n72jDD9xT9i5NQ zFQBpvc?>{hk`jaNUnPd;&y*Nyj3Ir0n0{E<fNxzG^7tVs>5JNGNeN?6+69FJw)NiP zX!{(9Nq?aD!dJedmuuMKn%M9lw#@=^6Ct&*a6oPwFMJAFF9<5n(A^E=54ZFI3kPD_ zI{4~%Qp<Zn@q=Ez;Y(xK(iAai7dhX6!a<*bfdPG86|w8=NcBHH_2^|9Iv<t>v6a`L zyp5cuVf{T~=LLz)iy-$CqZT=giHQ?X-UXSBOD%d>pz}dt1M9PpG9L!g2U~M8ROiD% zagQw@(<1M{;)$3vKufjg<p?Mrb22b6yxfUsqZUfzo)ZGin<DpZk=Kla#(+T>G!~lY zD#y@w4zXqsR3CukKp0eCz{;S(I0h<-Hs%FdH+$btgF(4TgTXCDgJJao4TjUJH5e}a z)n=G<1l5lqzhTQ`puB>u{4ro)V3<&)4j)(Fl%>HCxI}~D#Ci>es$K{!xC3FI{RBM* zi>ZTezl<>h1H&VvHP>e+o|trk>BOWR3@0Y}Fr1k5{-`X&y<@0jhM+V73NKh%KyDx6 zD$kJB5>r;9#|1hcR*qqd8(ifBzVa5?eXx8?j9)-%NiBEiQI>$p2T(ZRs~bT1eYozE zfsNb3!hss~1wG;oSKE`AJcBO{!@>c%%>*hRVf}f0^Fu?~-=OjvIZQ#}ph{t1AC%|u zl_lt96*`}svWwU<29{2URS)yaV2Wc<9D&NNxz>oaKTo_L_P>dK&|gU8S}2ge(A!MN z=>S_^AvO$1F_#pzpfrW-22eQIVcD~OZ~M7P8OszHthXtE*Sx~oW}tc*#)hRa9e>Dp z4@?du55l1O8zcszVPP>C+jJVBHXS!&J<Hm|rzep!egn%FpfJW&ucPNvbUrLhNojMC znh$Zg4Hid~w6&1a7NNXAj62Z76x1Kp1;rQA*(14f$_&VJ&olpOGYr<YFsRJI)=t2e zW+;spQp*QY;{{ioqo-{cA5`Xm!U1{RoD=k19BSE(9A?OA2$x%t)q~1)V&j7nvti*t zC_RAo2O^iDu>47je2?rOd~rdIxj;}jgZuyr2hdp($a6ri)@d_Tp3r1aGu2|~($iv? zZm7jjj5Pm9jrhXnKlCwEeCYv}u3>c@I-gLPzTol$_&RJE_Xqt;O&|8FRz2)r-}JD5 z!j%X8dIa{Jg4{M3(lsgN46<5K{DaB^<bFd_oif9p3CaxLBsCefwjkOUpnL!eXBdqw zEf5<X$nHRI$D^A|idu5w1Qrgs*2#eK3NdLGl&?s&pV;uCg}LZu4lEo56d%F!MTHq^ zo+uzPUyu@B#HyuNJix*Mc}x|yXPK1vBGzBDh+9xvBqiTqQws_QQ2l^DpHxc394mT1 z1XO0Ai^1~wVC$QJP8|gK9Yh-#85t!R7#Qe+7^wyZ1`0*G6$J_g1_lP^AfADNm4ShR zfdT^PhZd(673-%ZCS@k(>8IwE73&umnd#?bCg~ScmSp7T8R?nn7iX5F>J}s>XD6no z7V8%$XBJfI7Z)TJ6{kX}lKlLfV*U8!;`E}#f(*Uld@hg!5@9X@ISJtsGy1#466O++ zlMpU3rN2u|U@ieU3E>h@3@OkvcFc`HR_YoUnVY15LIIji3=P2UqOnVoii;p=#N03q z5*`rez{11OzyjnZ`ndv>KtW*vb`HW7pva<itiZ#<%n+1C!L9%~2j&V;G=cIgZF4T% z6-KahVPpjMJv3by7#h+cMp7~pA?d;h91-AB4CH@!Sb!X1K<gMmas{Xe1-Sz39JnhC zK#7)qt^ivHb_K{e2v>kZhQ@gW5f%oZq7&o_uyf$9FiNIFx=7B?ho%c~@dS1S$T<jC zfO8Cu!ve__pyCPa3UFx&%Ogf$H_^)#hAE)r0Cok)Iq<LmB@3G85qMY_CxI$aT>~TI zWE59ef_bzKi{fNRx-d=x6;>cufSm&m3rkRuO6#1OjBo|0@C3U8<Q#-6KtV)5R~UjS zbg(Nx&VjpvKIsA$7N(#w64VZbRBLcofQ4xv7SQ&EX)4G*T>~SCbKtH33)9gRph6Pl z3W&Y1@*))^Og~qE69Cv1V0&S%01MO26^1FGB2(AE2vU5(W5gI&9?35#(a*_GPRs%K zNpdoivI<hu^(^#KDswWExIpHBN*b_%Ad?XWg0mo&0*J7Iph5#|Ajo8dfyOv$I)Vl! zf}8?25M(mkK%4<j&_D}lsx}0h3^$O7F!aexDoQM>)ORaN%uOxNFUl^~4*+-b^wMA= z`eCU>#hLke#rmMGAHI%YfTxdsd}eN9dS+faq#QQ1fYwQdU?(D61_}XeX$;|2n!5~? zIzW*Cb|TzmMxdY^SeKcCnhju=ft(0;84<~Y#$je)2I{Ko8W<Uvp(b2hIf1OPgzU_c zV!fQy#G*W113k<5^vn|7f=VMjGu_<8<ox0aT|)ysQ{7Bs3p2gc^mNeR14x5DSc86Y zMrv|)d{Sv<PKtg!5(knR4a`7=3fTQ1k03%8TrXlN8U~&FLD>fEevn5H?gw>)u%+2S z=YCK^0lOdM5rq3eNqY#m-_RIT0f2I*35xrTLEa+Q{W+OQx+#@;Ir)hx`URD#6$ObU zkko2u49a96+rZYsL(7<w)QZP8ke9%=fvknwhO;~*CT-!i%>a~u!M1^{h1&*72xRwF zaN1^I4)PKx-I=47s31pBBi^cVGLs;YW?&8~S-@6->_m7B>`gL@7-WwjTLp4H*eZ~n z2&<@-8j-C6r8%%wAUhFOf#Qpr0cdGq02!~gOf&*T6@0wfBo)NPW>s)yaY<^fK9;J_ zzaTZw-3MDk#u2JKGqo7higfo0D9TSSO3ckoOv=p3EUAPxCKC-36Tuz_F~Fe;Z6lkc zf(in<yT;rEG_0YUXkcyzPEIh_q<|brXV+MoS%3>7T}!hR17z2Lk_7hgNgBo!&U9m7 z0BV5JENtKj#S}aWrkiMB3aX3Y$=1LC)c2;f^_C{!gkhiyVt_4#rVJX#1=RPr1K$+f zvBXm9Q6(vaLhVm9NCah016>dU6#Ve=$rO}dXcqbi`;EZ$if*ETkvXXCj<6rhqqYAn zjf~7ey%t?dBO`Ec8g4&0{%P)i-0=@8m#|jnxZ~eBzbG{<GbJ@2d$|pl=1Me3Gz3*f zpjbCVsQ@8^^CX2j+*rc48YF{CJKaPBgJe`&!5NP>wptpbB!OxiT}y+M6p*JWiD9Ds ziaTB*1wIzPmKGO*DpU|oOUp#$Pcu;M4T>o<aE^c%PoR8@Eq&rJ$0Q9@py(zVn52P2 z8*UCLp%HD4rHOGWs9?|qF;L9`Wf<bk!PQtXFaeiBSi%Q)x+kHr;+dP6o{9)t$P`GT z0SF>Z@Pkq*iFuD~HyD_MJPgVc;CWkk>NExwOW4Ab>fvB%U}6GF1iF?6CKe#az}*0f zQu>4g?)(CB5Eb13i6>AA2<ak%>OD~LfbcVQ!yRs)ktI0aBpMi5f-)k)KI%5Ip!QiB znSgt~x|T*JCMabsmE#m<AI|(tMk~%au_!4&4|{cjG}sDJ7Mx$2mx5g_k^)eKn}NzJ za6t+Va(Dp<jt-Iv9Eic#EhXQ9riP#*9o!BE6+nm-0!lcfl?1eKprwgPGB^Y+O-xcy zvkWLr4FU(^PJ^K0jR*$@6lInrmZTy@p=VxkNn%b;aB5LmY7zDbM^VBBs$W6L3tZ8H zixPM`1C?a-afGFb33%)Y)TsfbDWpCXkx@m3kicD}CxHtjl5(7PYEe>ZQGPM@D1ga= zayfX>4JelzfqV|nM3A{`+SqAm3~izr8iO(j!cHP%94WoQd_usVmWD>jpkhnc($Lr( z#ZFNCl2~05YbVa^g>&5sQd2a!w4hke2+{Haj{<|D$pocM4j#e6mPv3MWeizOlW1UU z04^wD`3>g^5?n@E8d-pnjDfDDkp*}j2_BI+0~M!HIKv7&c#F-0xSMs31qC^o$%!SI z`FWsnC^I<~M>ar8N8om@r$6>&6qH(=Us{w58NdrlOvy~lOGauGgInO>r~wz7u<*p$ zaTzo&H#PtjEV`hSfI5H-iq=6K=9Wh0$>2J}(#SjoTxP(-9F+0~v&(U&b20`JXq(Oh z^3oBdk2$FQ0!rfG!6$e=Hw4APU<z(zN1IxJN=i`k&;pdq5sn6z|0LCH^a^Q9Q)6>b z-qW=-1y_-zw?mMMG`cw&XPU;j?th?4KzC0!M4C1NC0<aP1~>iS$pc&_4yH7X>}Vr1 zsH2U{P}|C&q&_$uZE0i(8A-D=GBOz4g*76iaks@yK>2epg>;Cg8&aYMkClKDwI#Te zgVl@R@v1@VYIE>%f6!c`5lTr7>eZ9jHm7Z&hZNS9W~Sgyy{@I1nIWilL=+%{tqp?g zYMf;?xEnZ_QixZ8t2?5w2Ctz7rE5?EK~#%I-~we3)#WIzHZcbk%b<}B@JbDM3ITN! z235L7a<!##QWB_$)3r2CN&zw8t_CIRLF;Oq={gw{1=!Lxa#ysdvY;ei&p^*o&m58D zz`F=QNzM{9S^*CR@RS@m2AYGr+n`bo(rkv6&EViB-9Sq-lT=WzP1n-Q)G`sYJQ!vm z&WOVAW!!b15y&0_F03fdDbX`TgdVK%orv1_h7|BvGAxqY(2O!O0!5*2qJbGiGt8S{ zVNzUWX=-5#Dn4{AO)bn(hCYZ1F%(zf2`gMB5|RgtQj7C*%JeJ|p#>fX1En=%Q2P#^ z)^HXS_zW{j1!Y^%0)bRe1qwF|XAcv%VU|W_NuYLwuBDM#3TXTcZWu8khUQJ&VP*kN zzW5VGabZqoNvg4)0V2>0LHQCCXog_@uykPo5+;x?FikT^0i_7gv?8iUEx>g<X>PML zNHqf`16@mlRLEK~nA?a6Hgvb)4ma>X9s!>w73U&CED@BtKp~ch+It`(#E{LgG=-XD z39gnAiGql*LYQM|o@xftplfLkF31qIIx(SyWDd@<ACfMx#2xPbCuqR}(SwFAnaQ9* z#>ApZ{8}*8fd<~eSsfG^keO>(5&@@bY>_$`9Bl+HQov;ks3e8QJb3%?;B+*s=mM2t zX`qr3?r5CJY~Vv0cb<ndMrfC&eG*Iak~8q9XH+%dv<xjg6TuZ3JcMy>fuvFhqdElp z;617uu0#XKx;1bbMoA8ky*Yy_WG#)%z=Knuv<t3?;UP=ww2K;QM1?HwG>dc30+o`1 zqbqg?I=X_=rU9to0xD-AD=T2-EO<pR4T~(ijxqo@D?qIcNZSYQC{Vl(jH4_K%uFF| zJp(ff5QA=M4NpknPE(ek1{MuNDmXQ<C^^GBvjlt6f=h!^m>I0}GXo_xc({RDRU~$p zNosz;-9XrhCTXAsA80NFymlP!L{R%{P&m=j1U#?`Sym3t1h6at;tUQa;%sL^P9LCM z&EX%6zdlCDgHod*C=r6nJJewY$O_^?;z;mL3D6>X1MuotczR3%xt)f&8WB?1^9(|s z%hDh<4cyJKG)PNA>0r`2MIszQ*pWEXqzNd)(=a4`Q%e$45=#=XI}s)eN{^5Yaft?r z;7Me7RGWYTcQ826)B-e20xBE9V^#<Uf-6DVWf)i(5ez|7a48LTAjqW%2ZB@OfIHCA z)EK;f4m4>Ep1p=Ukk%Q6$PmQchyb75Lc=uZ?B<tR0y^mcdmO{1LD>Y{9t9QK#wd}T z1R4Vz98NTXHCl}<!H$B}(21b*IT)O1X=Dspq;6?soB}TYU{0iUN`%KGp@_zr7LCAT zV6+TH@FH<g0~3cE;qsu=Xab5;P--**7c$UrG)e^x#Sa!o8iTq3phkqTA*cZkD|U>) zBe{dak(NdlmY{^FYiX2(x?PXvDH0x?1fv^gnlu1!dLu0)$(eu;E=WyH&Iqo|E6GSL z&cv};6HO5~k%Gn`!HE<+K?O~u28Q4Ql%#r*j;=O_jYk-xcExZWa)^77gl?|3G_n9s z<AGNCLdNu9VNFIdrk|^EHjWd)<ps@CNT3V$ycg&KO1<FolR&9A5nQOkLNpOv;0~<Y z%*{cKbI?>Zs2V^_%#cyjlM~x`!p+hw1zb_;TAHPz9`i(}l!(u5IMW+A^U%H=4JgXY zE5TjE!=*u~54;Bfl=_Uo-5glzgLHvtp8DWU!Ja|j(xBmb$W&^gff0C^4OYt=KxXg< zk4r6$3?VMHG%`e;LZ(y7ga;a-FvU~fgC|629;QBtdFhUMi8+-xD|=)WpwtQ(nNBoF z1kXIf(|{qkA2RsdYXa^EgBN~*+aj>sMW;F*IrOk624odnmc~iYMyhcVsA5Ev_jF3R z$gUyAy|~I*Lo&_)A*X)AyIBY-2}-r#_3xlE7ILIGG!+<<aZ(5kU1<QzTVU71<KEB& zG<`w)Itv<H*rOdP$z^F^lm>3=TN;?4u9l!v3WYj^fGcsOO9NAI|Agk{l!qt&c>;ty zD0PBIh(W0ne2fshOf?0!MhBN$jlp|UK^xT|OA(<t$-tC8<v$|auqOb7JeQ?WQW_|- zbuEpOAvp-<Ryw6rgj)!^6=!-iqffYknyMkG6*#6?VX~mKY6fbUfYK_;VPpp21{dwi zD40vIhbT-Iw3Qvat`1c1qt>IKvWvtyOma$mm`jLoC#aJNawpiqh`bMS_Miz*OXJjJ zP$i^mX`BY$Ap&<No$?Zq;fb?74PFjFr+9Y<U4E09jAQT&<P(?*P=127PZQ0N+oxtp zps`BQe6xYH_31y`bhDXgwC1t0zcO9y6&pb_9f=Uz*bL}(pgY6#v$0CO)m*$%$+ zfHVCXK+gZ7d0W6aKPSH^xH2ypS7LxlgHkSJ$#9}UBKVjuc*v%J)A3+(sYx2hNuV+o zy!{dGQt&wx^hmSNKqC~UmL|sFodMtz%E0A6om(tK$3E_K3dv<OkA26GVC<pk7!nLh zo8ZC;)Jj1;nG7;wKG3c+g|(qgQQOd#pkzw>^oTd?EKMveKuu0vOOr&@^A*8G=0Lj+ zXFJ&d<Y>}d2datj_tKD6fX6>U1GJ#!%HX}<@NxvQmztzhg={kRgp90$3$$|^R3PYr z7~q9j6qF3eCKF>f?l1>AiL@|x$t=!xEK15ODFPn~gWY;GMWFl)KIs;epG{DG4{AKq z#RbNO(6~27UCRePhLH{~urx}7%u<0EAg3TwA1Gte!v#3g0nTk+xaUhjY0$AWB@@qi zuV86V+(XvggHAgH`xKV)!AoFB^EU~$LQZu6<#p6^R>0G7G_n<TECc97U+~esl*BR7 ze#Kpv6MIwv=80<{%R@b}=Wd7`C}P3eJV2Qmb@~u|h!YV(Os2JF;C;xTO{|c0xUlpD zs(gv*5s+;yDD{G^1rO`NtTiUG5GBi6OVc#S-Zo3qG}LqqatzIUi#ti-oOVIl`C5g% zc^P~}94L)IG9E0{K)p?@&c|VnDP*cT(ZCdPhCj?4$ifdSRX0|1EKSY8hw<rJnwmj2 zpTo@og(tQ&i`^WYMJdE}_}x>Hn`4B09v!&r4GJRgtp)Hh1MFi0PC_%v9K2@?wAcV# z-y)2{)wn|P9g0zwX5jM{40K`l1;C90g%hEOLp2I#SV1-sVF@cd)ed+m7WQ%p>AWV$ z0;izV<oxu!Owhhk>^d-%feJNnqZt$%kd2t|1Ojfi3^K<;&N2t>eS++pfIF7-W)+dg zwqgVsu^|gP0v&u7I(Tdh?pRQg!j{elE*an~|BN8ZBS}gI!KulmMWEYBuw2dNs1K6` zB|Y%k7EscIG>xDEWJJa`W|*lsVh8FXF4#d3pjr*3OJqpK-6TZX2|F=D*U~f*<<4qQ zG9dK^5@PMdRR$TSfSckZ#b;n?Vo^yIs1<}gbP@94I0ZEiz;Oz;2^y!yWGt*jm`jAc zX5h`upm<FJ&7r}HZ)3>TSK9g447@W1WG~nOaC<F5tKdk><Rtjl(liNjM;z!B1<?E! z%wBTR6e;%NN>>JuW&I?Dv!_4KEs|g<P-+4nRR>B<ph$%;Ffbrv2PfD_><I}h1)3@V z_mn}KWgsV7LDQ}QxY<uyT!M|nXPc#oDfrq;T}u<wWJ+U@ux+^F%@}-=A!&XivgY*g z49U;WNy@Ll9t?14P&9*64=9=~k-HkkI8P|1xTb{LPS|l~Y2b;(L<2LF!FXdM(E8Sa z4mmT(L2@9+fm{hI28_uV<)L=8TACSvdvLmzX2#$VTA1U=DWj<FI9wUR0MfN5T##XQ zZ(UN0vrF;|U?a331=v#;7KPwU016mzCIEF7;h{xr=>xJ4^+0_r_K@Nrvt(#hZkCMF zezgDz6Or(#>>x|iv?Nfas%vRxK;H5gYC8yL8ZrPE=!DY{QV$M1co>?8>&yVSG$^4! zDh|;2B4}|4JfV;=qX0J+d%A#2gXR*zlRcpEMU*nyfQ-2WxUqz6wKOsY?;6tuF;M*q z$}2>qL2^PEXJ^O|e5(l=w&JY_!Jz?F0g7GlC;_M#0B>}M#jYWEK?sfQHUOU}0_t9a zhwkBao06HHp}xWs%}^Cwme7MkbS(|Q<7SAa9w?%*j=$h;10aVeF?Qq1$A)C&V^BBA z1?S#&m@Fus!3*U;@eE#|1`lg8axu(Q?0$vGg4URUr;|bJ3Lra$U=7?<aQRMBc?C0- z2s=Tw8OTns<uHF5Kn}N~g`JkhDWH17Ko_<M3~nbGX^BXG;w&?aAY=9<`O^(_%@WS( zMrVD5JSZJOR$wF=B%*X$j3Au~+SzLePN=$x29O(BU}0=zLHf8M!avwj6PkYw(m-Ro zAbY_MfZGcmcPFiUB*9)wLj%Y<GT3b}FnhsCip27X6nk-%O$HF(lN7&1uM5SZkSoyu za^4E4c1Q)sF|70;rv*UlH7nR$0y|Vi7sLR!Md2<1#Rh3<0E-3K5}~6$7KL0mbG;>` zt4M0>;1~~a23hW%S;7T7?NZm$JS`EqJ!C;fDdSjBK*&DOrYX=YBdC@FpCkfH^%lvX zOh|G_6SmJ7d>k>Twg7K3gxd#dfRLEWi1MGY8E9Y$v^xN7G0Z-5@R?Us_n)OvN-8MY zbS;fd!3|rOeV}wp>QFEd{==C*$tgXY^ON&&9N7bw0+kTpO;n%~0=zK@;X6<hfV9vA z8;Lz9f~COwdO(9ky08sC2-`rRNoCs%j10ijlc2lhA!!3v=HMJa3oTA9D%MX+Ov+5m z(@)JSE7mVCG6UT>t6xxAl98Whq-UmIoLQ2pTacKXotU0lte=}$Qjn8hl9QRFpOl!K zotl?YtRJ77n4Di+p;w&G1#$y8^?(?lWDEB(WFIb;(uO8(0Earr4IsxL+yJf<=;a1b z6ocXdH5WlvC(_9cNuU8Yup2;*frkT#gSDihMO=W#K|pRm=|dRc95<!N4e=#Knb33y zIpW2@2yGw+=QVItvlmqDfcy(~06fegJ3Ocz?@0cIObmeh3vvM5UfRSpvb~@&W{`iu z4nWw8tG`BBIH#oMB$nnSRzf2gydD5-Imi_V%R!whY{e^eEe91YV9QZTI`H5K%`FFy zo`Wq1xdP#HP<+$aa>F$6wkll%!!+;)Cb;FsxRy9j7VMeeOS(a|i(wk%h<5|16A(6o z3Oee08^vZwodR_N!e-h8II_*)Wj~<MMm<RdWHI$i@pvSglfiQ$x(0^H;F~bveg<!) zrhaHA=am$J^R;0z_}+1_#i)fDIIUB?5Jk2a6slm0!R<j<3kv5oos^|)B#Xi4eSj?n zxd0K=U>*&9oC0nf>KYiPK#sA7`53&N0$UvC7nJDd<R>TQfZK^VnMnnC>4qkHh9=N^ z7z_+kz->K{kzljoet``BVDSqvMuM7dU?Y*2Y#89YAc+VgA@|jQoC`7=?n+RAW6f5C zjZ6hE7SuH`Oa-rKgd2%-ff8k@rywsKl3h|Es}&6lAr3&;OPlf-VK3x5Hjuq2xdrFB zYSi+t1*pOWg)`UzaR1_rI;z<VtpifQ4uIPWs(i2}8Di|s$xPBssm#mCPfXD-&C5*A zPe}zIJPWSxQXz-88W^TRPA-DwPMkBq6x)~rSxNx15j3m<_an~heyLz1G*ls0BWwgk zC$<uZVjGholl}&V$>35KVIw8g3vxWhCl{ANvSu=5?G?x>P%1%K1@bdBJcn!*$oZfu z1Z*e5D$u|bwXFh~3APGkC&DUfMH#|ZNuZL&K-a)939`%`mIEkCk2uFP@+wM8GINR{ zahC*M$PTs|>@T?0AkUK<pu}1Y>cN1l2D<?fz~JT(mMWB(JVC70pz088HOLJJtHEJF zQ>&A~$6tVx6*!1t0S-yeSggjVlGBP(Q%fofQuWN>t&wE#xC6*gu<3CBfY0s57K=m~ z3ceW%Y$&Qr!8|fungpJ+02vB49qv+4z+<gmh;eBW_y%!Mbb?KX8wxpR2#ZT8N=a!Y zMrrwZCD8l>YN~;=F4zqStHJ4twpN3u7D2uSy8&S}s5HSA=~VPJWTBveVG`I4aI0~~ zBK54c1g~J$H88Y9y$Q+$Tu4(pz~c)NOEMraZJ7dUX@V>Uy8!NI6H011oW&K2#h^wC z*kX_i;1<&+bt790USR~b7~}%D#k7fKWQ$Ef_JJ&hoMZ(nBXO<+AtrgDv|W-ii&K-K zS=bW1tOjfw$XbLqDXE9>*ak8dY#X>7h5L<?T#Lsxkg;IfK-MDs28u&+%Lv@If%jE_ zZ39`0unjzLNoL+ewk@%!2s$ikXbIlX4YCVtDZ(yLw}~1)L$M2#@xXS0+6@T1D9QRb z{RJ`<Y!}E<gk98%F(iLkq=Kx_H88Y5tv4xZcOv^MJ|nR>BPTNnQi585*BXJX1KEr4 z8aN|RA$g!%2TFEe>rlHT;G94M>p(RS*gBBC2;WgF;!u5O2`>J@=>(Ku;MRdM9@d5w zsbyqJVo7RAW^O7Z?kpkOfej2H_QI`$G~KBXnCRAl7L<T|2eubs9XS6{-#W-q0U+Oj z>_u2dt++$>9q!ct5Wiya9qu)j5E<wEytK^pQhaA)U{MHKwFX;hnh04<4y%p8`+2dI zq7Y;BeKM1Z5{oMJk=FG>WXN`j8SFeW$WAVJ6c~du6aB)((liM&v<utY1$PN3Env-A z5T8>$OhCmlC~Jd@6j0fMa0%54%;MyNqWlWTOrxO%<Yriyy$I{5R$!u82l58kcc|?y zP!WbL?U7o7#iLmV@&?#Cki7`sf#Q`0*1=kp7AWJlhTviwn{^l+-DJp>_J(=}@EfxY z3@yOtrGk6`HXr5-L!3nik;Z~EJlI%JD8Y@zxq^W>W6i;*dxMMxn-4P<6yn&ISrKV0 zc+sV<fg!|vxUrDc2w2Jr3}cInbM#OH)*QTi5@aUWaD<t-+LJ_>X_f}+nS;#)r)gN} z3ce?is5F4-PBZXDcDe?J5X0f_1cxcvW`aBkG81e#!c1_fgC#sk&xyr3kamPw639%j zRUkVNR)I=7Y|f{|Dv+6At3Y-ltOA!dRQ44pe!*6O>_k`viWMsRDiNBd%)q0@2&<^o zGKw$GPtHz-_KnRFLB@hS2DTPq8@QQ7l`urH4b)Hv+Xk{0VH>VC0O^SX#Wq-^C4#I) z*halbL$(dP6CLa~khKWgz-f~jA(@<?lamU*%^o_oZ)OQgDqy=2R)W(gjjRMk9LSeo zyAf7WEze=`B`9@(tpwSPu##%gh+(BE_>Ki#14C2DWv8%moqFR_<*A9;MX70!GSd`X zDub;9XFIrc;HsJ$@rY&}C_8|yL+z%6(=83GgT|jJcqJzd;t$1lCg3drx(0?O;K~_c z9o153QDR<7el8^HOwvFx2DS|~ae|wm)Cfyd+dvTpwhd%0!f#YdD5$nUBhDlZWG%ur zs%1Q6+ra0<gC<(cz->ynZ8&d=!)Tu&jt4U^Gy{)YfC>#zqDJg;G{hAz1WW_X_JB+S z8;fuou5ia|nkg)WnxX7G1%)b+jb>z@n!*}frb(dag1e2P)n3SBd`X#kiN(p8kR{26 zrr=dU;KBo3vBAqKYGp5U>p<p$tpitTaO-fzBdIM0bn8IL1#BJ2UPNGmB8M97JQV8; zAlqMb4ZwHL7$8z9)y8MjlJiO+4RZr?$W7S>P)iYBqgF_w*ac~rKrKbsg)6_18fz$a zfr>(1kiS5dBJ848lp*XgG=;4hHbrZjgVQDzO8eqePzw)IwV1+|2}5i}cnq8}scso4 z@IVP4Y%9VtYNZZTpMmNVuw@`y5tdOa%1|t`grpBcQ`EiK;4M_-W@*%E-MrG=f=Ycz zWu~870%Aa;5WLw9<WaCA;2y<!yA(0`fLOc12gQQz28A}<Zk&gxQqykmXcfqAup{7h zgW?zK2rCusHi6ti1#17H)`y^EK+X70ODoY&ODh5GDvQs_EP>9Wn52Qq0&o)zwSELg z0-3oMTa@Fn9#lGjtp~XS5%QoWKOKCZ3JPVg^&od3tOvzB9ju3~AvQ?_ms{}G0yrwD z82CAvd5Jmc`Z<Z{u@8!6P$Sj^>=K0k!I41^2S9EKG%y6;2~MRJ1-9geGX%gT9Vi8W zU4jS!YNr5P4lsu9A2l?F9GMGG1JsX#B>nj0{M>@foYa)~q{L!q31AG_dTd|_aS0*> zz&V1dX#kf4Kwi}aIRKpQ;UNId6LfI^sGSFP0LUeX5TJe<z!3r|ppAQA2Y_6HZ~)jj zWQG88pC}i;Y7BA)3dkz3od~NaiEUg~fm%yot3cgRgjJNpD=w=*1sT{XkevvtD2YMr zR)Lq-fs0H?s|c1_ac;CBx2=$zUzDm}oSc}GScHf^6Ub>J28Ix4z&(m{PY#uB2Sp^P zumn2;VLK(kjIFfB?sxFcCa~=wXTWU-Sx(hf8dlql!Ivz7l2|gT?bOOR$-yN>nR)4+ z{*bn~G31mz14D?#2;WjG_h8ru%R*p_5%z&gBr23a81{jhyWsEyS&Xm`6rJQYy^ymk zs(l6q;0YsL0|SF3u#aH*7P7;E8vYB&OwP`MRH_CB(0MATwQ%2ohHJ=9t0=xhwGGmY zg<1=@4Kn&ib-#fZ5P(855o9gGHmb!O!f!a&CK)G#f)ZOg!M*y$F*!LkC$%WCBo+Gs zB1nse%2JbkGLx_?%gIdgaSU*D_J(eENHj<UO&uG6PQw9T*98j^W6%&g*4Q2ZH=2Sg zDDWZ1;1UFy{*B4GpOH4<2s`mu7j|_QEF3}U3j0Vi-NO-QdNjc~?oSUlI{7#TBT^%H z(g2hiA$vlhF>L~wr@&Gg(A|Xw;A5gd=K-NyK4OBiET*#yEe$NeSsHXl1KKPFC@l_D zse=^DIMX3`%6GuZoHCc-07N>3j3y=;B!c_c@Z1bu+d5ETh~h$XaI+b7O$@kjM7R*# z!W*ERg5*L=GgI(^tGbqErjUy$pm`aT3J0!4M0O$0a|l7LyMarGzL~|zh=d3}BL!3- zLhh)71tMgycc7vf#fe6+^V*G4z$2e<Ck|*zL~^2~5o8WY*V4!gl7V4P1gFIT%g)G7 z#F-W$D<}sdq9N@_(ET#t^IJgofq*AZ;YAI2mFIwj9@J@;rsig#VK-e61JsU1I1LoD z1L`!K5t<C{GSVzUJ;8?`VZElP3@iuUsQ}8Tph5+_WdR;)kkgq4)M;kspdKzLt%3J2 zAe;s&lW7;B;E=)IWrBv9rD-DUdK$>42DsBeNsWfJ1rbienbycCJRn&MM^J!!mY`c@ zAmi?!oBU9-9qAogBJ2a*_y-!P(giWV!^#wt-^AEQ&G01DaYx8=B^p?of{QZ{gVJzC zn2S9w5%OG?<|&Xp=pY7i2OFHSshqTt>;<hO0TqVe1tqA%F<{?gDTpW<5{^&FFG<Qt zgskW_FozyoV_=T9<PH=C*h(6z+6^ks!2Sl6#E7B<oVsc4Z%`D2?FKmlVK*qYY3*<D zsr+EOL5_giO~nJRAPYpm!{G77`9+Ym_Xg&vpvEZ3Vz3Jk7K73s^*xPjF=$c;Y%$0M z2#dk-PW6~ZvN#1?WEvQlr-EDnw-^-5ShF-`$s2C5p)q(5IcRX)3?+S;&?HZnBIcKj zVY}ENE`a-(il<p1B`y?;L6HgaG1vtNi@|A}+Hs6*u>q*80$U7n0o-ER#4(b^Mkye# zfh-2Q0B$j4<14j&oLibxl8Lm{-UvLNple_VaR$P6nq+1S+re{8VB0}WRfO%JAfb9u zf?+#&UmnPIuruJc(<aK%Y&S56hP;6}xO73-PD#CmJT(O0ByV62J_86;aDwebSOqH9 z$PH#3R)OyV16u`dzrtIW;P@poHRG}hR2YM-0^5o36)66w>?`m!p<t^}eFZ8rs9{xp z0cbudA94h%fjM~l4#+yNy$GLCD`}ux2Wl{atpm+eA*`cT@<6u^RC|G~1KEqPj#}}C zW*uz8*Bs^MR|D`47;JHeu?ZqGIX|xqenGi`fjMka*Bop#+yjudFP1b;go&V#00jxy zXoQL2s)!sD&A_wUU=u+`!%YN*G1evvK{uL#%rVe4Fn}11FcBn9TsVRj^;<xPV+{<< zpsUgiASNRW#8vfRIuYGKP_q!^La@mQ1BnksbOS*d4s0OEWQ2jBP$bXGpo$G_Ajo8d zfz--r@!->ep^Fd9phw~wn4v8z1vvtn^NDG;BA3Nzwt<R9u;0LCJ=IHoRNKJIG{Lrk ztVM(*uBf5RZ{UrpAlty!B5b2tNT!wMC70yqLyx~SfNhaAFaz6+un-)ySPBG^y@z2T zsOSg#5LBxoECh!xO)LbJ8(<4THX|&gS_Go`&=|b0QrE!181;e{@PIruazk-RQGNk< z(UyTRbgP^J#8QOksMTITu?tjQg8hXWkkl$uQ0xME0Bje?QiQ*#6=}$JfzSQ|+Xb=| zZWs9432gC&T0NvEC!3gp4rxnIPL40uGlW+=#?ZC?2F73u5axny!IIL6HWw5mAoqeT zK$r_I=_xQb1!Mr&T#yBDb3s8)L`{w}9H8@f1_oxR3s@nGxrldfaY;(Dwl?C>R|Bwd zpoRj(2DpPE`<N&(7_yMS0BQr=V6ZR=DFV~Q;IPy+FffG}1+Th5;*=O{4DOkL;tm{% za2JCw5W!|JN-++)=m~Vje^Gu~W=?7mA_aq2o`OsT8;>v*JVt~ifQd8})Jy`KirUx# zwbm(cE2zc-n+h@>;Z|HhOPpIFH$58|7=u?3Axs755JDk<<FYN}mQ7|!Y7tU(Yz*#) zfqVhB7-1jSPqeTP<PorasI@V!G72Ts$nhVjvH;r$vKZk%qGE}3`wYP6r-GJ_qFftj zK()F!zPO~Q6nc=VfdTZ`Rs)E&2;WgFG|_B>rg(_82-`qGOfVl25tgX7nSe4YI3z*V zB5b2p%%Rw32)<`Z*TBHg2%Pd^1*IX?LNXb2f;e<m$<Pp#_(8UTt%dsyvYe3$xh@{n zHfVzsVlBcps<rV^Yy&U<0Q(JOE!;Lxv|+8)NzLI%e#5;;5Zv>|mL^M!i$HBB5Jsyl zLD$NI`UIdA55_1-&J0|1V2Kudh8dZIbb+pow*c2(uoPtqO4g*g%+d(5XbN;2yfL`a zf*FQ0P;t8qcbI{9pAc|aVrfY}w7O0-NCfZE0fiT2_5|iC@Ntf$7-S5&H7C))*Z`%a z54j2zf50QT$kNEd6ddT5Miv&}j0<xSG2w)45U#m>Lj#cc1iY4?l$EUKhzKRvVwFUc z#VUq4n@UJ=hh~&1q)bdSFh$v(WC+f3q`Arzd}SnPwLI8Ncs5N1WdTx*vNTBq7m~V` zCW&bzCr%U(;!K*5&0qvvm6==$n$SfKdGN*Sp!8{poCOU{a8+1HA&+Sq$ZrOqJrL&L z)CvnRL-5*565VELW(*!-)wMJ;0dJ3mnFda%Sc^$KZo?UF29Sw2JQ=9CvbZEQ7gQR8 zrbwOhb93|akV4P|RD^^4Y(nJu8ZcMlHP_NO4SaE>E{K6r-GaT3FD&t!i!0k25R+|D zyVIc34HV;`)B~PPL&Ol+#dyLrCo>7%EMxFSCD3ilpzMXT3mlv-NioaP$O4k8K@8BQ zT7<hmfrl^bFx-VR-55e9?y$HE_dW&Z{GwF+_q#jlqpIP8UFNL|a|p~YhLGZo*7k$; zHGv`%6vyD&8eu=KN}8(vPc$%v>@-U>Fhx0@zz}@BEw;F%w*BC05>yL-9Rl~iF|HDl zs`gu&8iRu0K-bdL1ZAHLC?%7+`X4oIVPDRMss{Hh_J-!T{0}SNax#-3L80e_sOTXl z1;g%+hX*FO{>K)X_zW{P0u>FQ5(9iuJKQkHav3Z+1Giz8M#<)&^sEcJg&k%X?qJ4k zn1O*Yc-J4eOAQVsXdBCr#PfTSGV}EH^z`)tz;}Xkfy@O}HXw7s7Qh^72p)CA7JS${ z4w&YG4_*VC3$g%iF3yvdi8R*`dOeMSG1vl_xwr$BNOKLqhmC<cz6K@+X2}S1N$akG z!U1yMIv2=EAk9!Sk<T>)_j9nMCfsgCG83d3Y$nKXggZf19BJ`|WF|;6*i4Y&2s1%m QAlpokX0Vwc!>M2<0DM<q)Bpeg diff --git a/examples/mixture/README.txt b/examples/mixture/README.txt index bbf508e59d..1cc9671e40 100644 --- a/examples/mixture/README.txt +++ b/examples/mixture/README.txt @@ -2,4 +2,4 @@ Gaussian Mixture Models ----------------------- -Examples concerning the `scikits.learn.mixture` package. +Examples concerning the `sklearn.mixture` package. diff --git a/examples/svm/README.txt b/examples/svm/README.txt index 9c83e641b5..f9f3b57afc 100644 --- a/examples/svm/README.txt +++ b/examples/svm/README.txt @@ -3,5 +3,5 @@ Support Vector Machines ----------------------- -Examples concerning the `scikits.learn.svm` package. +Examples concerning the `sklearn.svm` package. diff --git a/setup.py b/setup.py index af79845f6e..1197d029ac 100644 --- a/setup.py +++ b/setup.py @@ -9,7 +9,7 @@ import sys import os import shutil -DISTNAME = 'sklearn' +DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' LONG_DESCRIPTION = open('README.rst').read() MAINTAINER = 'Fabian Pedregosa' -- GitLab