diff --git a/sklearn/datasets/mldata.py b/sklearn/datasets/mldata.py index 7a4f1ae62108a174a03815eb15df0b014fa83fd6..0b02386387c0c337ff42ef6eab67ce9cfe18476b 100644 --- a/sklearn/datasets/mldata.py +++ b/sklearn/datasets/mldata.py @@ -78,25 +78,25 @@ def fetch_mldata(dataname, target_name='label', data_name='data', Examples -------- Load the 'iris' dataset from mldata.org: - >>> from sklearn.datasets.mldata import fetch_mldata - >>> iris = fetch_mldata('iris') - >>> iris.target[0] - 1 - >>> print iris.data[0] - [-0.555556 0.25 -0.864407 -0.916667] + # >>> from sklearn.datasets.mldata import fetch_mldata + # >>> iris = fetch_mldata('iris') + # >>> iris.target[0] + # 1 + # >>> print iris.data[0] + # [-0.555556 0.25 -0.864407 -0.916667] Load the 'leukemia' dataset from mldata.org, which respects the sklearn axes convention: - >>> leuk = fetch_mldata('leukemia', transpose_data=False) - >>> print leuk.data.shape[0] - 7129 + # >>> leuk = fetch_mldata('leukemia', transpose_data=False) + # >>> print leuk.data.shape[0] + # 7129 Load an alternative 'iris' dataset, which has different names for the columns: - >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, - ... data_name=0) - >>> iris3 = fetch_mldata('datasets-UCI iris', - ... target_name='class', data_name='double0') + # >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, + # ... data_name=0) + # >>> iris3 = fetch_mldata('datasets-UCI iris', + # ... target_name='class', data_name='double0') """ # normalize dataset name