diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst
index 5bb98b3b4c0841f98af784a395849617c4fa8f2c..25f261592f2d528c7b6082a2d8e230eb32239908 100644
--- a/doc/modules/cross_validation.rst
+++ b/doc/modules/cross_validation.rst
@@ -40,7 +40,7 @@ data for testing (evaluating) our classifier::
   >>> X_test.shape, y_test.shape
   ((60, 4), (60,))
 
-  >>> clf = svm.SVC(kernel='linear', C=100).fit(X_train, y_train)
+  >>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
   >>> clf.score(X_test, y_test)                           # doctest: +ELLIPSIS
   0.96...
 
@@ -68,12 +68,12 @@ linear kernel Support Vector Machine on the iris dataset by splitting
 the data and fitting a model and computing the score 5 consecutive times
 (with different splits each time)::
 
-  >>> clf = svm.SVC(kernel='linear', C=100)
+  >>> clf = svm.SVC(kernel='linear', C=1)
   >>> scores = cross_validation.cross_val_score(
   ...    clf, iris.data, iris.target, cv=5)
   ...
   >>> scores                                            # doctest: +ELLIPSIS
-  array([ 1.  ...,  0.96...,  0.9 ...,  0.96...,  1.  ...])
+  array([ 1.  ...,  0.96...,  0.9 ...,  0.96...,  1.        ])
 
 The mean score and the standard deviation of the score estimate are hence given
 by::
@@ -89,7 +89,7 @@ scoring function, e.g. from the metrics module::
   >>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5,
   ...     score_func=metrics.f1_score)
   ...                                                     # doctest: +ELLIPSIS
-  array([ 1.  ...,  0.96...,  0.89...,  0.96...,  1.  ...])
+  array([ 1.  ...,  0.96...,  0.89...,  0.96...,  1.        ])
 
 In the case of the Iris dataset, the samples are balanced across target
 classes hence the accuracy and the F1-score are almost equal.
@@ -107,7 +107,7 @@ validation iterator instead, for instance::
 
   >>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
   ...                                                     # doctest: +ELLIPSIS
-  array([ 0.97...,  1.        ,  1.        ])
+  array([ 0.97...,  0.97...,  1.        ])
 
 The available cross validation iterators are introduced in the following.
 
diff --git a/doc/modules/feature_selection.rst b/doc/modules/feature_selection.rst
index 6c0993733b9c9b47a3d39df6dcabf84ab0ea4e57..e4799a6b300fdd6fa6d147b31522508a83c875bb 100644
--- a/doc/modules/feature_selection.rst
+++ b/doc/modules/feature_selection.rst
@@ -97,7 +97,7 @@ for classification::
   >>> X, y = iris.data, iris.target
   >>> X.shape
   (150, 4)
-  >>> X_new = LinearSVC(C=1., penalty="l1", dual=False).fit_transform(X, y)
+  >>> X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y)
   >>> X_new.shape
   (150, 3)
 
diff --git a/doc/modules/multiclass.rst b/doc/modules/multiclass.rst
index ab0e8b9f301d7ce27db6852f95ba45398609233e..fd75ac1af3768508ae75d7ba42d54158427b13c3 100644
--- a/doc/modules/multiclass.rst
+++ b/doc/modules/multiclass.rst
@@ -64,7 +64,7 @@ default choice. Below is an example::
   >>> from sklearn.svm import LinearSVC
   >>> iris = datasets.load_iris()
   >>> X, y = iris.data, iris.target
-  >>> OneVsRestClassifier(LinearSVC(C=100.)).fit(X, y).predict(X)
+  >>> OneVsRestClassifier(LinearSVC(C=1)).fit(X, y).predict(X)
   array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
@@ -110,7 +110,7 @@ dataset is used `n_classes` times. Below is an example::
   >>> from sklearn.svm import LinearSVC
   >>> iris = datasets.load_iris()
   >>> X, y = iris.data, iris.target
-  >>> OneVsOneClassifier(LinearSVC(C=100.)).fit(X, y).predict(X)
+  >>> OneVsOneClassifier(LinearSVC(C=1)).fit(X, y).predict(X)
   array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
@@ -162,7 +162,7 @@ Example::
   >>> from sklearn.svm import LinearSVC
   >>> iris = datasets.load_iris()
   >>> X, y = iris.data, iris.target
-  >>> OutputCodeClassifier(LinearSVC(C=100.), code_size=2, random_state=0).fit(X, y).predict(X)
+  >>> OutputCodeClassifier(LinearSVC(C=1), code_size=2, random_state=0).fit(X, y).predict(X)
   array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst
index f708125e16ce8d573ccc716192e5ffcf34adaeb9..f26288cebb62ab9040b3063b6acc84b782a96682 100644
--- a/doc/tutorial/basic/tutorial.rst
+++ b/doc/tutorial/basic/tutorial.rst
@@ -167,8 +167,8 @@ one::
 
   >>> clf.fit(digits.data[:-1], digits.target[:-1])
   SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
-  gamma=0.001, kernel='rbf', probability=False shrinking=True, tol=0.001,
-  verbose=False)
+    gamma=0.001, kernel='rbf', probability=False, shrinking=True, tol=0.001,
+    verbose=False)
 
 Now you can predict new values, in particular, we can ask to the
 classifier what is the digit of our last image in the `digits` dataset,
@@ -204,9 +204,9 @@ persistence model, namely `pickle <http://docs.python.org/library/pickle.html>`_
   >>> iris = datasets.load_iris()
   >>> X, y = iris.data, iris.target
   >>> clf.fit(X, y)
-  SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
-  gamma=0.25, kernel='rbf', probability=False, shrinking=True, tol=0.001,
-  verbose=False)
+  SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.25,
+    kernel='rbf', probability=False, shrinking=True, tol=0.001,
+    verbose=False)
 
   >>> import pickle
   >>> s = pickle.dumps(clf)
diff --git a/doc/tutorial/statistical_inference/model_selection.rst b/doc/tutorial/statistical_inference/model_selection.rst
index 16513bd9916b06aac98313df1ac89369e96b73da..88c56aebcefab6e169442332ab270563e964bf1b 100644
--- a/doc/tutorial/statistical_inference/model_selection.rst
+++ b/doc/tutorial/statistical_inference/model_selection.rst
@@ -19,7 +19,7 @@ better**.
     >>> y_digits = digits.target
     >>> svc = svm.SVC(C=1, kernel='linear')
     >>> svc.fit(X_digits[:-100], y_digits[:-100]).score(X_digits[-100:], y_digits[-100:])
-    0.95999999999999996
+    0.97999999999999998
 
 To get a better measure of prediction accuracy (which we can use as a
 proxy for goodness of fit of the model), we can successively split the
@@ -39,7 +39,7 @@ data in *folds* that we use for training and testing::
     ...     y_train = np.concatenate(y_train)
     ...     scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
     >>> print scores
-    [0.94156928213689484, 0.96661101836393992, 0.93322203672787984]
+    [0.93489148580968284, 0.95659432387312182, 0.93989983305509184]
 
 .. currentmodule:: sklearn.cross_validation
 
@@ -69,13 +69,13 @@ The cross-validation can then be implemented easily::
     >>> kfold = cross_validation.KFold(len(X_digits), k=3)
     >>> [svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
     ...          for train, test in kfold]
-    [0.94156928213689484, 0.96661101836393992, 0.93322203672787984]
+    [0.93489148580968284, 0.95659432387312182, 0.93989983305509184]
 
 To compute the `score` method of an estimator, the sklearn exposes
 a helper function::
 
     >>> cross_validation.cross_val_score(svc, X_digits, y_digits, cv=kfold, n_jobs=-1)
-    array([ 0.94156928,  0.96661102,  0.93322204])
+    array([ 0.93489149,  0.95659432,  0.93989983])
 
 `n_jobs=-1` means that the computation will be dispatched on all the CPUs
 of the computer.
@@ -146,13 +146,13 @@ estimator during the construction and exposes an estimator API::
     >>> clf.fit(X_digits[:1000], y_digits[:1000]) # doctest: +ELLIPSIS
     GridSearchCV(cv=None,...
     >>> clf.best_score_
-    0.98699897502292733
+    0.988991985997974
     >>> clf.best_estimator_.gamma
     9.9999999999999995e-07
 
     >>> # Prediction performance on test set is not as good as on train set
     >>> clf.score(X_digits[1000:], y_digits[1000:])
-    0.94353826850690092
+    0.94228356336260977
 
 
 By default the :class:`GridSearchCV` uses a 3-fold cross-validation. However, if
@@ -164,7 +164,7 @@ a stratified 3-fold.
     ::
 
         >>> cross_validation.cross_val_score(clf, X_digits, y_digits)
-	array([ 0.98497496,  0.97829716,  0.97996661])
+	array([ 0.97996661,  0.98163606,  0.98330551])
 
     Two cross-validation loops are performed in parallel: one by the
     :class:`GridSearchCV` estimator to set `gamma`, the other one by
diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst
index 08dc5d4d67ec612c5783ab0949117a123af7d034..b79d0d8ff7b08283a851fc99cb9c60e50212edd8 100644
--- a/doc/tutorial/statistical_inference/supervised_learning.rst
+++ b/doc/tutorial/statistical_inference/supervised_learning.rst
@@ -450,9 +450,9 @@ classification --:class:`SVC` (Support Vector Classification).
     >>> from sklearn import svm
     >>> svc = svm.SVC(kernel='linear')
     >>> svc.fit(iris_X_train, iris_y_train)
-    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
-    gamma=0.0, kernel='linear', probability=False, shrinking=True, tol=0.001,
-    verbose=False)
+    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
+      kernel='linear', probability=False, shrinking=True, tol=0.001,
+      verbose=False)
 
 
 .. warning:: **Normalizing data**