From 34c2904a95a707c6e6148480a7e2c86a0f7ad86b Mon Sep 17 00:00:00 2001 From: Andreas Mueller <amueller@ais.uni-bonn.de> Date: Sun, 6 May 2012 20:20:05 +0200 Subject: [PATCH] FIX testing: random state problem in forest testing. --- sklearn/ensemble/tests/test_forest.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/sklearn/ensemble/tests/test_forest.py b/sklearn/ensemble/tests/test_forest.py index 0eabf44b48..0259c28927 100644 --- a/sklearn/ensemble/tests/test_forest.py +++ b/sklearn/ensemble/tests/test_forest.py @@ -188,7 +188,7 @@ def test_oob_score_classification(): """Check that oob prediction is as acurate as usual prediction on the training set. Not really a good test that prediction is independent.""" - clf = RandomForestClassifier(oob_score=True) + clf = RandomForestClassifier(oob_score=True, random_state=rng) clf.fit(X, y) training_score = clf.score(X, y) assert_almost_equal(training_score, clf.oob_score_) @@ -197,7 +197,8 @@ def test_oob_score_classification(): def test_oob_score_regression(): """Check that oob prediction is pessimistic estimate. Not really a good test that prediction is independent.""" - clf = RandomForestRegressor(n_estimators=50, oob_score=True) + clf = RandomForestRegressor(n_estimators=50, oob_score=True, + random_state=rng) n_samples = boston.data.shape[0] clf.fit(boston.data[:n_samples / 2, :], boston.target[:n_samples / 2]) test_score = clf.score(boston.data[n_samples / 2:, :], -- GitLab