diff --git a/sklearn/model_selection/tests/test_split.py b/sklearn/model_selection/tests/test_split.py index fba323492be856666d9923f777347058576dce03..601e9b259c537fb89d9fafc9614735dd8ee40b04 100644 --- a/sklearn/model_selection/tests/test_split.py +++ b/sklearn/model_selection/tests/test_split.py @@ -1028,16 +1028,23 @@ def test_cv_iterable_wrapper(): # Since the wrapped iterable is enlisted and stored, # split can be called any number of times to produce # consistent results. - assert_array_equal(list(kf_iter_wrapped.split(X, y)), - list(kf_iter_wrapped.split(X, y))) + np.testing.assert_equal(list(kf_iter_wrapped.split(X, y)), + list(kf_iter_wrapped.split(X, y))) # If the splits are randomized, successive calls to split yields different # results kf_randomized_iter = KFold(n_splits=5, shuffle=True).split(X, y) kf_randomized_iter_wrapped = check_cv(kf_randomized_iter) - assert_array_equal(list(kf_randomized_iter_wrapped.split(X, y)), - list(kf_randomized_iter_wrapped.split(X, y))) - assert_true(np.any(np.array(list(kf_iter_wrapped.split(X, y))) != - np.array(list(kf_randomized_iter_wrapped.split(X, y))))) + np.testing.assert_equal(list(kf_randomized_iter_wrapped.split(X, y)), + list(kf_randomized_iter_wrapped.split(X, y))) + + try: + np.testing.assert_equal(list(kf_iter_wrapped.split(X, y)), + list(kf_randomized_iter_wrapped.split(X, y))) + splits_are_equal = True + except AssertionError: + splits_are_equal = False + assert_false(splits_are_equal, "If the splits are randomized, " + "successive calls to split should yield different results") def test_group_kfold():