From 2c425fa9308760e8516fba47aeb04ab6aceb265d Mon Sep 17 00:00:00 2001 From: Olivier Grisel <olivier.grisel@ensta.org> Date: Wed, 15 Jun 2011 00:58:23 +0200 Subject: [PATCH] typo --- doc/datasets/index.rst | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/doc/datasets/index.rst b/doc/datasets/index.rst index b5ccc3d2bc..780625ca62 100644 --- a/doc/datasets/index.rst +++ b/doc/datasets/index.rst @@ -59,13 +59,13 @@ Scipy sparse CSR matrices are used for ``X`` and numpy arrays are used for ``y`` You may load a dataset like this:: - >>> from scikits.learn.datasets import load_svmlight_format - >>> X_train, y_train = load_svmlight_format("/path/to/train_dataset.txt") + >>> from scikits.learn.datasets import load_svmlight_file + >>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt") ... # doctest: +SKIP You may also load two datasets at once:: - >>> X_train, y_train, X_test, y_test = load_svmlight_format( + >>> X_train, y_train, X_test, y_test = load_svmlight_file( ... "/path/to/train_dataset.txt", ... "/path/to/test_dataset.txt") # doctest: +SKIP @@ -73,7 +73,7 @@ In this case, ``X_train`` and ``X_test`` are guaranteed to have the same number of features. Another way to achieve the same result is to fix the number of features:: - >>> X_test, y_test = load_svmlight_format( + >>> X_test, y_test = load_svmlight_file( ... "/path/to/test_dataset.txt", n_features=X_train.shape[1]) ... # doctest: +SKIP -- GitLab