From 2842f488ef587e7a74344a6082bdf81b5dde21ba Mon Sep 17 00:00:00 2001
From: Andreas Mueller <amueller@ais.uni-bonn.de>
Date: Mon, 19 Dec 2011 12:13:51 +0100
Subject: [PATCH] FIX doc rst references

---
 doc/developers/performance.rst | 2 +-
 doc/modules/naive_bayes.rst    | 2 +-
 doc/whats_new.rst              | 6 +++---
 3 files changed, 5 insertions(+), 5 deletions(-)

diff --git a/doc/developers/performance.rst b/doc/developers/performance.rst
index 0ad41037bf..ba9e73af7a 100644
--- a/doc/developers/performance.rst
+++ b/doc/developers/performance.rst
@@ -87,7 +87,7 @@ for interactively exploring the relevant part for the code.
 
 Suppose we want to profile the Non Negative Matrix Factorization module
 of the scikit. Let us setup a new IPython session and load the digits
-dataset and as in the :ref:`example_decomposition_plot_nmf.py` example::
+dataset and as in the :ref:`example_plot_plot_digits_classification.py` example::
 
   In [1]: from sklearn.decomposition import NMF
 
diff --git a/doc/modules/naive_bayes.rst b/doc/modules/naive_bayes.rst
index 9331476eb9..aca244c884 100644
--- a/doc/modules/naive_bayes.rst
+++ b/doc/modules/naive_bayes.rst
@@ -90,7 +90,7 @@ are estimated using maximum likelihood.
 
 .. topic:: Examples:
 
- * :ref:`example_naive_bayes.py`
+ * :ref:`example_gaussian_naive_bayes.py`
 
 
 .. _multinomial_naive_bayes:
diff --git a/doc/whats_new.rst b/doc/whats_new.rst
index 260b032a34..34e221ef36 100644
--- a/doc/whats_new.rst
+++ b/doc/whats_new.rst
@@ -548,7 +548,7 @@ Changelog
 
   - Lots of cool new examples and a new section that uses real-world
     datasets was created. These include:
-    :ref:`example_applications_plot_face_recognition.py`,
+    :ref:`example_applications_face_recognition.py`,
     :ref:`example_applications_plot_species_distribution_modeling.py`,
     :ref:`example_applications_svm_gui.py`,
     :ref:`example_applications_wikipedia_principal_eigenvector.py` and
@@ -625,7 +625,7 @@ New classes
     - New :class:`pipeline.Pipeline` object to compose different estimators.
 
     - Recursive Feature Elimination routines in module
-      :ref:`feature_selection_doc`.
+      :ref:`feature_selection`.
 
     - Addition of various classes capable of cross validation in the
       linear_model module (:class:`linear_model.LassoCV`, :class:`linear_model.ElasticNetCV`,
@@ -673,7 +673,7 @@ Examples
 
     - new examples using some of the mlcomp datasets:
       :ref:`example_mlcomp_sparse_document_classification.py`,
-      :ref:`example_mlcomp_document_classification.py`
+      :ref:`example_document_classification_20newsgroups.py`
 
     - Many more examaples. `See here
       <http://scikit-learn.org/stable/auto_examples/index.html>`_
-- 
GitLab