diff --git a/scikits/learn/metrics/metrics.py b/scikits/learn/metrics/metrics.py index d4c37d17a1cd53a4a63ae5829be1674f32f82dd7..f0c5c73406d298ce3d7b4832b04cbc60c7c3557b 100644 --- a/scikits/learn/metrics/metrics.py +++ b/scikits/learn/metrics/metrics.py @@ -69,13 +69,15 @@ def confusion_matrix(y_true, y_pred, labels=None): def roc_curve(y_true, y_score): """compute Receiver operating characteristic (ROC) + Note: this implementation is restricted to the binary classification task. + Parameters ---------- y_true : array, shape = [n_samples] true binary labels - y_scores : array, shape = [n_samples] + y_score : array, shape = [n_samples] target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. @@ -98,7 +100,7 @@ def roc_curve(y_true, y_score): >>> fpr, tpr, thresholds = roc_curve(y, scores) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) - + References ----------