diff --git a/scikits/learn/naive_bayes.py b/scikits/learn/naive_bayes.py index a6c34574ee1b92a1246b73051dea1ed8aae88796..887e158befc84000d4ada7ee723a0d9cc0371ca5 100644 --- a/scikits/learn/naive_bayes.py +++ b/scikits/learn/naive_bayes.py @@ -75,11 +75,10 @@ class GNB(object): joint_log_likelihood = [] for i in range(np.size(self.unique_y)): jointi = np.log(self.proba_y[i]) - n_ij = np.sum(-0.5 * np.log(np.pi * self.sigma[i,:])) - n_ij = n_ij * np.ones(np.size(X, 0)) - n_ij -= np.sum((X - self.theta[i,:])**2, 1) - n_ij += np.sum(2 * self.sigma[i,:]) * np.ones(np.size(X, 0)) - joint_log_likelihood.append(jointi + n_ij) + n_ij = - 0.5 * np.sum(np.log(np.pi*self.sigma[i,:])) + n_ij -= 0.5 * np.sum( ((X - self.theta[i,:])**2) /\ + (self.sigma[i,:]),1) + joint_log_likelihood.append(jointi+n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T proba = np.exp(joint_log_likelihood) proba = proba / np.sum(proba,1)[:,np.newaxis]