diff --git a/sklearn/datasets/kddcup99.py b/sklearn/datasets/kddcup99.py index 89c74238bc4f304ac0f813f711487ad75cda17ab..6d52c5b6214b241efb86b62425f5e4faf14299de 100644 --- a/sklearn/datasets/kddcup99.py +++ b/sklearn/datasets/kddcup99.py @@ -222,7 +222,7 @@ def fetch_kddcup99(subset=None, data_home=None, shuffle=False, return Bunch(data=data, target=target) -def _fetch_brute_kddcup99(subset=None, data_home=None, +def _fetch_brute_kddcup99(data_home=None, download_if_missing=True, random_state=None, shuffle=False, percent10=True): @@ -230,10 +230,6 @@ def _fetch_brute_kddcup99(subset=None, data_home=None, Parameters ---------- - subset : None, 'SA', 'SF', 'http', 'smtp' - To return the corresponding classical subsets of kddcup 99. - If None, return the entire kddcup 99 dataset. - data_home : string, optional Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py index 3f228e85c43e849782dd93fc6cf6090688e4c3ed..4bcc0ae1c534900f1c05d70f2de562e0ef6bf18f 100644 --- a/sklearn/model_selection/_split.py +++ b/sklearn/model_selection/_split.py @@ -566,7 +566,7 @@ class StratifiedKFold(_BaseKFold): def __init__(self, n_splits=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_splits, shuffle, random_state) - def _make_test_folds(self, X, y=None, groups=None): + def _make_test_folds(self, X, y=None): if self.shuffle: rng = check_random_state(self.random_state) else: diff --git a/sklearn/neural_network/multilayer_perceptron.py b/sklearn/neural_network/multilayer_perceptron.py index ec1196a3e2ac6225556dd2f11b7a86e6e1dd6478..d4adfd9107f6e6592ac18e8f01373287fa128dd9 100644 --- a/sklearn/neural_network/multilayer_perceptron.py +++ b/sklearn/neural_network/multilayer_perceptron.py @@ -640,7 +640,7 @@ class BaseMultilayerPerceptron(six.with_metaclass(ABCMeta, BaseEstimator)): % self.solver) return self._partial_fit - def _partial_fit(self, X, y, classes=None): + def _partial_fit(self, X, y): return self._fit(X, y, incremental=True) def _predict(self, X):