From 0bd5615c55399931021a91786987629945971adc Mon Sep 17 00:00:00 2001 From: Gael Varoquaux <gael.varoquaux@normalesup.org> Date: Wed, 21 Apr 2010 16:02:40 +0000 Subject: [PATCH] ENH: Make it possible for SVM.predict to work on a single sample. git-svn-id: https://scikit-learn.svn.sourceforge.net/svnroot/scikit-learn/trunk@679 22fbfee3-77ab-4535-9bad-27d1bd3bc7d8 --- scikits/learn/svm.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/scikits/learn/svm.py b/scikits/learn/svm.py index a4c3d19c9d..114524b45e 100644 --- a/scikits/learn/svm.py +++ b/scikits/learn/svm.py @@ -71,7 +71,7 @@ class BaseLibsvm(object): return self def predict(self, T): - T = np.asanyarray(T, dtype=np.float64, order='C') + T = np.atleast_2d(np.asanyarray(T, dtype=np.float64, order='C')) return libsvm.predict_from_model_wrap(T, self.support_, self.coef_, self.rho_, self.svm, self.kernel, self.degree, self.gamma, @@ -85,7 +85,7 @@ class BaseLibsvm(object): def predict_proba(self, T): if not self.probability: raise ValueError("probability estimates must be enabled to use this method") - T = np.asanyarray(T, dtype=np.float64, order='C') + T = np.atleast_2d(np.asanyarray(T, dtype=np.float64, order='C')) return libsvm.predict_prob_from_model_wrap(T, self.support_, self.coef_, self.rho_, self.svm, self.kernel, self.degree, self.gamma, @@ -281,7 +281,7 @@ class LinearSVC(object): self._weight) def predict(self, T): - T = np.asanyarray(T, dtype=np.float64, order='C') + T = np.atleast_2d(np.asanyarray(T, dtype=np.float64, order='C')) return liblinear.predict_wrap(T, self.coef_, self.solver_type, self.eps, self.C, self._weight_label, -- GitLab