diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index f3d12cae7d7bd85530e392d991270357e4027eb0..2e92393309aa9d61b5348c947d097e1e97b44657 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -74,7 +74,9 @@ fi if [[ "$CIRCLE_BRANCH" =~ ^master$|^[0-9]+\.[0-9]+\.X$ && -z "$CI_PULL_REQUEST" ]] then - MAKE_TARGET=dist # PDF linked into HTML + # nonstopmode is used to not wait for CI timeout in case of an error + # PDF linked into HTML + MAKE_TARGET="dist LATEXMKOPTS=--interaction=nonstopmode" elif [[ "$build_type" =~ ^QUICK ]] then MAKE_TARGET=html-noplot @@ -105,7 +107,7 @@ conda update --yes --quiet conda # Configure the conda environment and put it in the path using the # provided versions conda create -n $CONDA_ENV_NAME --yes --quiet python numpy scipy \ - cython nose coverage matplotlib sphinx=1.5 pillow + cython nose coverage matplotlib sphinx=1.6.2 pillow source activate testenv # Build and install scikit-learn in dev mode diff --git a/doc/about.rst b/doc/about.rst index 1fa63a6fc331b614aa4b5b24c9bc3d6b856b0732..c4208efdc247a5717cd04374f8a89bb4138ee018 100644 --- a/doc/about.rst +++ b/doc/about.rst @@ -1,5 +1,3 @@ - - About us ======== @@ -221,7 +219,7 @@ The 2013 Paris international sprint :width: 120pt :target: http://www.frs-fnrs.be/ -.. figure:: http://sites.uclouvain.be/dysco/pmwiki/uploads/Main/dysco.gif +.. figure:: images/dysco.png :width: 120pt :target: http://sites.uclouvain.be/dysco/ diff --git a/doc/images/dysco.png b/doc/images/dysco.png new file mode 100644 index 0000000000000000000000000000000000000000..4054e7f1dea37df05425b8fd8c33b859fc8aff89 Binary files /dev/null and b/doc/images/dysco.png differ diff --git a/sklearn/gaussian_process/gaussian_process.py b/sklearn/gaussian_process/gaussian_process.py index 7adac552a5c1ed0e4c6fd39bcbff8cb8f841bd64..53c519e5d5ac8b19dc0a5a6c8861efca38233763 100644 --- a/sklearn/gaussian_process/gaussian_process.py +++ b/sklearn/gaussian_process/gaussian_process.py @@ -566,20 +566,15 @@ class GaussianProcess(BaseEstimator, RegressorMixin): A dictionary containing the requested Gaussian Process model parameters: - sigma2 - Gaussian Process variance. - beta - Generalized least-squares regression weights for - Universal Kriging or given beta0 for Ordinary - Kriging. - gamma - Gaussian Process weights. - C - Cholesky decomposition of the correlation matrix [R]. - Ft - Solution of the linear equation system : [R] x Ft = F - G - QR decomposition of the matrix Ft. + - ``sigma2`` is the Gaussian Process variance. + - ``beta`` is the generalized least-squares regression weights for + Universal Kriging or given beta0 for Ordinary Kriging. + - ``gamma`` is the Gaussian Process weights. + - ``C`` is the Cholesky decomposition of the correlation + matrix [R]. + - ``Ft`` is the solution of the linear equation system + [R] x Ft = F + - ``G`` is the QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") diff --git a/sklearn/preprocessing/label.py b/sklearn/preprocessing/label.py index e8ea17f413a59e82f6ef2506aace74af19009e5f..f1d85b1c36e2efd85351bc9d631476412da33983 100644 --- a/sklearn/preprocessing/label.py +++ b/sklearn/preprocessing/label.py @@ -349,10 +349,9 @@ class LabelBinarizer(BaseEstimator, TransformerMixin): threshold : float or None Threshold used in the binary and multi-label cases. - Use 0 when: - - Y contains the output of decision_function (classifier) - Use 0.5 when: - - Y contains the output of predict_proba + Use 0 when ``Y`` contains the output of decision_function + (classifier). + Use 0.5 when ``Y`` contains the output of predict_proba. If None, the threshold is assumed to be half way between neg_label and pos_label.