
Shopping Application Methodology and Contribution

23085483 – Tran Duy Anh
23085487 – Nguyen Nhat Minh
23085492 – Nguyen Duc Trung

April 23, 2025

Contents

1 Scrum Implementation 3
1.1 Sprint Organization . 3
1.2 Development Process . 3

1.2.1 CI/CD Pipeline . 3

2 Team Contributions 4
2.1 Backend Development . 4

2.1.1 API Architecture . 4
2.1.2 Authentication and Authorization 4
2.1.3 Security Measures . 5

2.2 Database Design . 5
2.3 Data Validation with Schemas . 6
2.4 Dummy Data Implementation . 7
2.5 Key Functionalities . 8

2.5.1 Shop Management . 8
2.5.2 Order and Cart Management . 9
2.5.3 Admin Dashboard . 9
2.5.4 Search Functionality . 10

2.6 Frontend Development . 10
2.6.1 User Authentication . 11
2.6.2 Shop Management . 12
2.6.3 Product Management . 12
2.6.4 Shop Owner Dashboard . 12
2.6.5 Shop Owner Product Management 13
2.6.6 Shop Owner Order Management 13
2.6.7 Admin Dashboard . 14
2.6.8 Admin Product Management . 15
2.6.9 Admin Shop Owner Management 16
2.6.10 Admin User Management . 17
2.6.11 Admin Category Management . 18
2.6.12 Admin System Statistics . 19
2.6.13 API Integration . 20
2.6.14 Non-Functional Requirements . 20

1

3 Technical Implementations 20
3.1 Project Structure . 20
3.2 Payment Integration . 22
3.3 Testing Implementation . 23

3.3.1 Authentication Testing (test auth.py) 23
3.3.2 Cart Testing (test cart.py) . 24
3.3.3 Payment Testing (test payment.py) 24
3.3.4 Admin Testing (test admin.py) 25
3.3.5 Product Testing (test product.py) 25
3.3.6 Order Testing (test order.py) . 26
3.3.7 Category Testing (test category.py) 27
3.3.8 Search Testing (test search.py) 27
3.3.9 Shop Testing (test shop.py) . 28

4 Conclusion 28

2

Abstract

This document outlines the development process and team feedback for an e-
commerce application built using a Python frontend based on CustomTkinter and
a FastAPI backend. The Scrum process enabled iterative development, with feed-
back including backend infrastructure, database schema, security, testing, and a
responsive GUI. The frontend provides role-based interfaces for customers, shop
owners, and admin users, which interface seamlessly with the backend via REST-
ful APIs. Comprehensive unit and integration testing ensures system reliability.
We introduce the system architecture, core functionalities, testing plan, and imple-
mentation, pointing out the frontend’s authentication, shop, product, owner, and
admin management functionalities.

1 Scrum Implementation

1.1 Sprint Organization

The project utilizes the Scrum method to supply a dynamic and collaborative develop-
ment process. Being a three-member team, the work is organized into incremental sprints,
with each member focusing on a primary area of expertise:

• Trung: Responsible for system architecture, supporting development, creating and
managing all system diagrams (Use Case, Class, Sequence), and writing unit and
integration tests.

• Minh: Focused on building the frontend user interface using CustomTkinter, en-
suring an intuitive and responsive design.

• Duy Anh: Led backend development, handling database modeling, API routing,
implementing security and data validation layers, and ensuring high test coverage.

Each sprint concludes with a review and retrospective session, enabling early issue
detection and continuous process improvement. The Scrum approach balances flexibil-
ity and structure, fostering creativity while maintaining discipline to deliver a scalable
application.

1.2 Development Process

1.2.1 CI/CD Pipeline

To maintain a high development pace and ensure confidence in deployments, a CI/CD
pipeline was implemented. This pipeline triggers automated tests and deployment scripts
with each code push.

1 stages:

2 - install

3 - test

4 - deploy

Listing 1: CI/CD Stages

The pipeline is configured using GitLab CI/CD. Tests are executed using Pytest, and
artifacts are stored for test result reporting.

3

2 Team Contributions

2.1 Backend Development

2.1.1 API Architecture

A modular backend was developed using FastAPI, incorporating RESTful routing for
scalability. The architecture separates business logic through routers, supporting func-
tionalities such as shop management, product handling, order processing, payments, cart
operations, search, categories, and administration.

1 app.include router(search.router , prefix="/search", tags=["search

"])

2 app.include router(auth.router , prefix="/auth", tags=["auth"])

3 app.include router(payment.router , prefix="/payment", tags=["

payment"])

4 app.include router(shop.router , prefix="/shops", tags=["shops"])

5 app.include router(product.router , prefix="/product", tags=["

product"])

6 app.include router(category.router , prefix="/category", tags=["

category"])

7 app.include router(order.router , prefix="/order", tags=["order"])

8 app.include router(cart.router , prefix="/cart", tags=["cart"])

9 app.include router(admin.router , prefix="/admin", tags=["admin"])

Listing 2: API Routing Example

Each router is organized by domain responsibility, such as /shops for shop manage-
ment, /order for order processing, and /admin for administrative functions, ensuring
efficient collaboration and ease of scalability.

2.1.2 Authentication and Authorization

A role-based authentication system (customer, shop owner, admin) was implemented
using OAuth2, with password hashing via Bcrypt and JWT access tokens. The
hashing.py file handles, 2app handles secure password hashing and token generation.

1 def create access token(data: dict):

2 to encode = data.copy()

3 expire = datetime.utcnow () + timedelta(minutes=ACCESS TOKEN

EXPIRE MINUTES)

4 to encode.update({"exp": expire })
5 encoded jwt = jwt.encode(to encode , SECRET KEY , algorithm=

ALGORITHM)

6 return encoded jwt

Listing 3: JWT Token Creation

This authentication system integrates with auth.py to provide endpoints for regis-
tration, login, and user profile management, incorporating security checks like email
duplication prevention and password verification.

4

2.1.3 Security Measures

Advanced security measures were implemented, including encryption of sensitive data
such as credit card numbers and CVVs using the Fernet library in security.py. Encryp-
tion keys are derived from environment variables for enhanced security.

1 def encrypt card number(card number: str) -> str:

2 return fernet.encrypt(card number.encode ()).decode ()

3

4 def decrypt card number(encrypted card: str) -> str:

5 return fernet.decrypt(encrypted card.encode ()).decode ()

Listing 4: Card Number Encryption

Data validation was integrated into schemas (payment.py) to ensure the validity of
card numbers, CVVs, and expiry dates before storage.

1 class PaymentCreate(BaseModel):

2 payment method: str = Field (..., min length=3, max length =50)

3 card number: str = Field (..., min length =12, max length =19,

pattern=r"^\d+$")
4 cvv: str = Field (..., min length=3, max length=3, pattern=r"

^\d+$")
5 expiry date: str

6

7 @field validator("card number")

8 @classmethod

9 def encrypt card(cls , value):

10 return encrypt card number(value)

Listing 5: Payment Validation

2.2 Database Design

The database schema was designed using SQLModel and MySQL, ensuring robust relation-
ships and referential integrity between major entities: User, Shop, Product, Order,
Payment, Cart, and Category.

Each entity is mapped to a table with appropriate primary keys, foreign keys, and
relationships. The design supports real-world e-commerce workflows such as user authen-
tication, managing shops and products, processing payments and orders, and handling
shopping carts.

The main models include:

• User: Holds user information (email, username, phone) and is related to Shops,
Orders, Payments, and Carts.

• Shop: Linked to a User (shop owner) and holds Products.

• Product: Belongs to a Shop and optionally a Category; can have multiple Product
Images.

• Order and OrderItem: Track purchase details, tied to User, Shop, Payment, and
Products.

5

• Payment: Linked to User; stores payment information securely.

• Cart and CartItem: Allow users to add products to cart before checkout.

• Category: Classifies products into meaningful groups.

The following Python code snippet demonstrates the definition of the Shop model:

1 class Shop(SQLModel , table=True):

2 id: Optional[int] = Field(default=None , primary key=True)

3 owner id: int = Field(foreign key="user.id")

4 name: str = Field(unique=True , index=True)

5 description: Optional[str] = None

6 image url: Optional[str] = None

7 address: str

8 latitude: float

9 longitude: float

10 created at: datetime = Field(default factory=datetime.utcnow)

11

12 owner: User = Relationship(back populates="shops")

13 products: List["Product"] = Relationship(back populates="shop

")

Listing 6: Shop Model

To illustrate the complete database design, the Entity-Relationship Diagram (ERD)
is shown below:

Indexes were applied to fields like email (User) and name (Shop, Category) to optimize
query performance, while relationships facilitate efficient access to related data.

2.3 Data Validation with Schemas

Pydantic was utilized in the schemas/ directory to validate input and output data, en-
suring consistency and security. For example, the UserCreate schema enforces password
length and phone number format.

1 class UserCreate(BaseModel):

2 username: str

3 email: EmailStr

4 phone number: str

5 password: str

6

7 @field validator("password")

8 @classmethod

9 def password must not be empty(cls , v):

10 if len(v) < 8:

11 raise ValueError("Password must be at least 8

characters long")

12 return v

Listing 7: User Creation Schema

Schemas like PaymentCreate, OrderCreate, and ProductRead were designed to map
accurately to database models, handling optional fields and sensitive data (e.g., card
number encryption).

6

Figure 1: Database

2.4 Dummy Data Implementation

Dummy data was implemented in dummy data.py to support testing and demonstration,
including users, shops, products, orders, and carts.

1 def insert dummy data(session: Session):

7

2 if not session.exec(select(User).where(User.email == "

user@example.com")).first():

3 customer = User(

4 username="string",

5 email="user@example.com",

6 password=hash password("string"),

7 phone number="1234567890",

8 role="customer",

9)

10 session.add(customer)

11 session.commit ()

Listing 8: Dummy Data Loader

Conditional insertion prevents duplicates, ensuring the database is ready for testing
and demonstration scenarios.

2.5 Key Functionalities

2.5.1 Shop Management

Endpoints in shop.py were developed for shop management, including creation, updates,
deletion, and statistics retrieval. The /shops/create endpoint integrates geocoding to
automatically derive coordinates from addresses and supports image uploads.

1 @router.post("/create", response model=ShopRead)

2 def create shop(

3 name: str = Form (...),

4 description: str = Form(None),

5 address: str = Form (...),

6 file: UploadFile = File(None),

7 session: Session = Depends(get session),

8 current user: User = Depends(get current user),

9):

10 geolocator = Nominatim(user agent="shop locator")

11 location = geolocator.geocode(address)

12 if not location:

13 raise HTTPException(status code =400, detail="Invalid

address")

14 shop = Shop(

15 name=name ,

16 description=description ,

17 address=address ,

18 latitude=location.latitude ,

19 longitude=location.longitude ,

20 owner id=current user.id,

21)

22 session.add(shop)

23 session.commit ()

Listing 9: Shop Creation Endpoint

The /shops/stats/[shop id] endpoint provides revenue and order count insights, aid-
ing shop owners in effective management.

8

2.5.2 Order and Cart Management

Order and cart processing systems were implemented in order.py and cart.py. The
/cart/checkout endpoint groups items by shop, calculates shipping fees based on dis-
tance, and creates separate orders.

1 @router.post("/checkout")

2 def checkout cart(

3 checkout data: dict ,

4 session: Session = Depends(get session),

5 current user: User = Depends(get current user),

6):

7 delivery address = checkout data.get("delivery address")

8 payment id = checkout data.get("payment id")

9 selected items = checkout data.get("selected items", [])

10 if not delivery address or not payment id:

11 raise HTTPException(

12 status code =400,

13 detail="Missing required parameters: delivery address

and payment id",

14)

15 # ... (logic for grouping items by shop and creating orders)

Listing 10: Checkout Endpoint

Shipping fees are calculated based on geographic distance with a capped maximum,
ensuring fairness for users.

2.5.3 Admin Dashboard

Administrative endpoints in admin.py were developed for user management, shop owner
oversight, category management, and system statistics. The /admin/stats/revenue end-
point provides detailed revenue insights from products and shipping.

1 @router.get("/stats/revenue")

2 def get revenue statistics(

3 session: Session = Depends(get session),

4 current user: User = Depends(get current user),

5):

6 verify admin(current user)

7 orders = session.exec(select(Order)).all()

8 total product revenue = sum(order.total price * 0.05 for

order in orders)

9 total shipping revenue = sum(order.shipping price for order

in orders)

10 return {
11 "total revenue": round(total product revenue + total

shipping revenue , 2),

12 "product revenue": round(total product revenue , 2),

13 "shipping revenue": round(total shipping revenue , 2),

14 }
Listing 11: Revenue Statistics Endpoint

9

Statistics on user growth and top-selling products support data-driven administrative
decisions.

2.5.4 Search Functionality

A flexible search system was implemented in search.py, enabling searches for shops and
products by name or category, with filtering by search type (shops, products, or both).

1 @router.get("/", response model=List[Union[Shop , Product]])

2 def search(

3 name: str = Query(None , description="Name to search"),

4 category: str = Query(None , description="Category to filter

by (for products)"),

5 search type: str = Query("both", description="Search type: ’

shops ’, ’products ’, or ’both’"),

6 db: Session = Depends(get session),

7):

8 results = []

9 if search type in ["shops", "both"]:

10 shop query = select(Shop)

11 if name:

12 shop query = shop query.where(Shop.name.ilike(f"%{
name}%"))

13 results.extend(db.exec(shop query).all())

14 if search type in ["products", "both"]:

15 product query = select(Product)

16 if name:

17 product query = product query.where(

18 or (Product.name.ilike(f"%{name}%"), Product.

description.ilike(f"%{name}%"))
19)

20 results.extend(db.exec(product query).all())

21 return results

Listing 12: Search Endpoint

2.6 Frontend Development

The frontend, developed using CustomTkinter, provides a modern, dark-themed user
interface tailored to customers, shop owners, and administrators. The main.py file or-
chestrates frame-based navigation, enabling seamless transitions between views while
enforcing role-based access control.

1 def switch frame(frame name , *args):

2 global access token , user role

3 print(f"switch frame called with frame name={frame name},
args={args}")

4 if frame name == "dashboard bypass":

5 token to use = args [0] if args and isinstance(args[0],

str) else access token

6 frames["dashboard"] = dashboard frame(root , switch frame ,

API URL , token to use)

10

7 frames["dashboard"]. place(relx=0, rely=0, relwidth=1,

relheight =1)

8 frames["dashboard"]. tkraise ()

9 return

10 # ... (logic for role -based routing and frame management)

Listing 13: Frame Switching

The UI adopts a consistent dark theme with a primary color (#00c1ff) for accents,
configured as follows:

1 ctk.set appearance mode("dark")

2 ctk.set default color theme("blue")

Listing 14: UI Theme Configuration

2.6.1 User Authentication

User authentication is handled by login.py and register.py in the components/auth

directory. The login interface provides fields for email and password, with validation to
ensure non-empty inputs. Upon successful login, a JWT token is received and passed to
the dashboard.

1 def login api(email , password , API URL):

2 try:

3 response = requests.post(

4 f"{API URL}/auth/login", json={"email": email , "

password": password }
5)

6 if response.status code == 200:

7 data = response.json()

8 return response.status code , data

9 return response.status code , response.json()

10 except Exception as e:

11 return 500, {"detail": f"Request error: {str(e)}"}
Listing 15: Login API Request

The registration interface collects username, email, phone number, and password, with
client-side validation for email format, password length, and phone number digits. The
forgot pass.py file, intended for password recovery, is currently empty and not integrated
into the application.

Key features include:

• Two-column layout with branding on the left and form on the right.

• Input validation using regular expressions (e.g., email pattern).

• Feedback via CTkMessagebox for errors or success.

• Navigation links to switch between login and registration.

11

2.6.2 Shop Management

Shop management is implemented in components/shop/create shop.py and components/

shop/view shop.py. The shop creation interface allows users to input a name, description,
address, and upload a logo, with validation and image preview. The shop view displays
details and products in a scrollable grid.

Key features include:

• Form submission to /shops/create with JWT authentication.

• Dynamic product cards with images and view buttons.

• Role-based navigation for shop owners.

2.6.3 Product Management

Product management is handled by components/product/create product.py, view product

.py, and edit product.py. Shop owners can create and edit products, while customers
can view details and add items to their cart.

Key features include:

• Dynamic category selection for product creation.

• Quantity selector for cart addition in product view.

• Image handling with preview and resizing.

2.6.4 Shop Owner Dashboard

The shop owner dashboard, implemented in components/owner/owner dashboard.py, pro-
vides a centralized interface for shop management, displaying shop details, revenue statis-
tics, and recent products.

Key features include:

• Shop information section with logo, name, description, and address.

• Revenue analysis with all-time shipped orders and product revenue.

• Scrollable product table showing image, title, name, category, price, and stock.

• Auto-refresh every 30 seconds for statistics.

The product table creation is shown below:

1 def create product row(product):

2 row = ctk.CTkFrame(product rows frame , fg color="transparent"

, height =60)

3 row.pack(fill="x", pady =1)

4 img cell = ctk.CTkFrame(row , fg color="transparent")

5 img cell.place(relx=0, rely=0, relwidth =0.15, relheight =1)

6 img label = ctk.CTkLabel(img cell , text="No Image")

7 img label.place(relx =0.5, rely =0.5, anchor="center")

8 if product.get("images") and len(product["images"]) > 0:

9 image url = product["images"][0]. get("image url")

12

10 if image url:

11 resp = requests.get(image url)

12 if resp.status code == 200:

13 pil img = Image.open(io.BytesIO(resp.content)).

resize ((40, 40))

14 tk img = ImageTk.PhotoImage(pil img)

15 img label.configure(image=tk img , text="")

16 img label.image = tk img

Listing 16: Product Table Row Creation

2.6.5 Shop Owner Product Management

The product management interface, in components/owner/owner products.py, allows“‘latex
allows shop owners to view, edit, delete, or archive products. A scrollable table displays
product details, with action buttons for editing and deletion.

Key features include:

• Table columns for image, title, name, category, price, stock, and actions.

• Edit button navigates to edit product.py.

• Delete button prompts confirmation and offers archiving (setting stock to 0) if
deletion is blocked by orders.

The delete/archive logic is implemented as follows:

1 def delete product ():

2 if CTkMessagebox(title="Confirm Delete", message=f"Delete

product {product[’name ’]}?", icon="question", option 1="Yes",

option 2="No").get() == "Yes":

3 headers = {"Authorization": f"Bearer {token }"}
4 resp = requests.delete(f"{API URL}/product/delete/{

product[’id ’]}", headers=headers)

5 if resp.status code == 200:

6 CTkMessagebox(title="Success", message="Product

deleted successfully", icon="info")

7 fetch products ()

8 elif resp.status code == 400:

9 if CTkMessagebox(title="Cannot Delete Product",

message="This product cannot be deleted because it has been

ordered by customers .\n\nWould you like to archive this

product instead (set stock to 0)?", icon="warning", option 1="

Yes", option 2="No").get() == "Yes":

10 archive product(product["id"])

Listing 17: Product Deletion/Archiving

2.6.6 Shop Owner Order Management

The order management interface, in components/owner/owner orders.py, enables shop
owners to view and update orders, with tabs for pending and shipped orders.

Key features include:

13

• Tabbed interface for pending and shipped orders.

• Order cards displaying order ID, date, customer, total, and products.

• Confirm shipment button for pending orders, updating status via /order/update

status/[order id].

• Scrollable frames with mouse wheel support.

The order card creation is shown below:

1 def create order card(parent , order data , is pending=True):

2 card = ctk.CTkFrame(parent , fg color="#2b2b2b", corner radius

=10, height =180)

3 card.pack(fill="x", pady=10, padx =5)

4 order id = order data.get("id", "N/A")

5 order label = ctk.CTkLabel(card , text=f"Order #{order id}",
font=("Helvetica", 16, "bold"), text color="white")

6 order label.pack(anchor="w")

7 if is pending:

8 def confirm shipment ():

9 if CTkMessagebox(title="Confirm Shipment", message=f"

Confirm that order #{order id} has been shipped?", icon="

question", option 1="Yes", option 2="No").get() == "Yes":

10 update order status(order id, "shipped")

11 confirm btn = ctk.CTkButton(card , text="Confirm Shipment"

, command=confirm shipment , fg color="#00c1ff", hover color="#

0096ff", height =30)

12 confirm btn.pack(side="bottom", fill="x")

Listing 18: Order Card Creation

2.6.7 Admin Dashboard

The admin dashboard, implemented in components/admin/dashboard.py, serves as the
central hub for administrators, providing navigation to specialized management interfaces
for products, shop owners, users, categories, and system statistics. It integrates with
backend endpoints in auth.py to verify admin roles and fetch user profiles.

1 def check admin():

2 headers = {"Authorization": f"Bearer {access token }"}
3 try:

4 resp = requests.get(f"{API URL}/auth/role", headers=

headers)

5 if resp.status code == 200:

6 role data = resp.json()

7 if role data.get("role") != "admin":

8 switch func("dashboard")

9 return False

10 else:

11 switch func("login")

12 return False

13 except Exception as e:

14

14 CTkMessagebox(

15 title="Error",

16 message=f"Failed to connect to server: {e}",
17 icon="cancel",

18)

19 return False

20 return True

Listing 19: Admin Role Verification

Key features include:

• Card-based layout with clickable cards for User Management, Shop Owner Man-
agement, Category Management, and System Statistics, each with distinct colors
for visual clarity.

• Dynamic welcome message displaying the admin’s username fetched from /auth/

profile.

• Role-based access control, redirecting non-admin users to the main dashboard or
login page.

• Responsive design with a gradient header, icon support, and a logout button.

• Error handling via CTkMessagebox for server connectivity issues.

2.6.8 Admin Product Management

The product management interface, implemented in components/admin/product management

.py, allows administrators to oversee marketplace products, including approving, reject-
ing, or viewing product details. It integrates with the /admin/products endpoint for data
retrieval and updates.

1 def approve product ():

2 selected items = product tree.selection ()

3 if not selected items:

4 CTkMessagebox(

5 title="Warning",

6 message="Please select a product to approve",

7 icon="warning",

8)

9 return

10 product id = product tree.item(selected items [0])["values"

][0]

11 headers = {"Authorization": f"Bearer {access token }"}
12 try:

13 response = requests.put(

14 f"{API URL}/admin/products/{product id}/approve",
headers=headers

15)

16 if response.status code == 200:

17 CTkMessagebox(

18 title="Success",

19 message="Product approved successfully",

15

20 icon="check",

21)

22 on filter change () # Refresh the list

23 except Exception as e:

24 CTkMessagebox(

25 title="Error", message=f"An error occurred: {str(e)}"
, icon="cancel"

26)

Listing 20: Product Approval Function

Key features include:

• A searchable and filterable table displaying product ID, name, category, price, shop
owner, status, creation date, and image availability.

• Filters for product status (All, Approved, Pending, Rejected) and sorting options
(Newest/Oldest First, Price High/Low).

• Action buttons for approving, rejecting, or viewing product details, with rejection
requiring a reason via a dialog.

• Detailed product view dialog showing images, descriptions, and shop information,
with approve/reject options for pending products.

• Color-coded status tags (green for approved, brown for pending, red for rejected)
for visual clarity.

2.6.9 Admin Shop Owner Management

The shop owner management interface, implemented in components/admin/shop owner

management.py, enables administrators to manage shop owner accounts, including viewing
their shops and deleting accounts. It integrates with the /admin/owners endpoint.

1 def delete shop owner ():

2 selected item = owner tree.selection ()

3 if not selected item:

4 CTkMessagebox(

5 title="Warning",

6 message="Please select a shop owner to delete",

7 icon="warning",

8)

9 return

10 owner id = owner tree.item(selected item [0])["values"][0]

11 username = owner tree.item(selected item [0])["values"][1]

12 confirm = CTkMessagebox(

13 title="Confirm Deletion",

14 message=f"Are you sure you want to delete shop owner ’{
username } ’?\n\nThis will also delete all their shops and

products .\n\nThis action cannot be undone!",

15 icon="question",

16 option 1="Cancel",

17 option 2="Delete",

18)

16

19 if confirm.get() == "Delete":

20 headers = {"Authorization": f"Bearer {access token }"}
21 response = requests.delete(

22 f"{API URL}/admin/owners/{owner id}", headers=headers

23)

24 if response.status code == 200:

25 CTkMessagebox(

26 title="Success",

27 message="Shop owner deleted successfully",

28 icon="check",

29)

30 fetch shop owners ()

Listing 21: Shop Owner Deletion

Key features include:

• A table displaying shop owner ID, username, email, phone number, and role, with
search functionality by username or email.

• Action buttons for viewing shops, refreshing data, and deleting owners, with con-
firmation dialogs for deletions.

• A dialog for viewing shops owned by a selected owner, displaying shop name, de-
scription, address, and creation date.

• Visual highlighting for owners with shops and search matches.

2.6.10 Admin User Management

The user management interface, implemented in components/admin/user management.py,
allows administrators to manage regular user (buyer) accounts, including searching and
deleting users. It integrates with the /admin/users endpoint.

1 def delete user():

2 selected item = user tree.selection ()

3 if not selected item:

4 CTkMessagebox(

5 title="Warning",

6 message="Please select a user to delete",

7 icon="warning",

8)

9 return

10 user id = user tree.item(selected item [0])["values"][0]

11 username = user tree.item(selected item [0])["values"][1]

12 confirm = CTkMessagebox(

13 title="Confirm Deletion",

14 message=f"Are you sure you want to delete user ’{ username
} ’?",

15 icon="question",

16 option 1="Cancel",

17 option 2="Delete",

18)

19 if confirm.get() == "Delete":

17

20 headers = {"Authorization": f"Bearer {access token }"}
21 response = requests.delete(

22 f"{API URL}/admin/users/{user id}", headers=headers

23)

24 if response.status code == 200:

25 CTkMessagebox(

26 title="Success", message="User deleted

successfully", icon="check"

27)

28 fetch users()

Listing 22: User Deletion

Key features include:

• A table displaying user ID, username, email, phone number, and role, with search
functionality by username or email.

• Action buttons for refreshing data and deleting users, with confirmation dialogs.

• Visual highlighting for search matches and alternating row colors for readability.

2.6.11 Admin Category Management

The category management interface, primarily implemented in components/admin

/category management.py, enables administrators to create, edit, delete, and view
product categories, supporting hierarchical structures with parent categories. It in-
tegrates with the /admin/categories and /category endpoints for data operations.

1 def save category ():

2 name = name entry.get().strip ()

3 description = desc entry.get("1.0", "end -1c").strip ()

4 parent = parent var.get()

5 if not name:

6 CTkMessagebox(

7 title="Warning", message="Category name is

required", icon="warning"

8)

9 return

10 parent id = None

11 if parent != "None":

12 try:

13 parent id = int(parent.split("ID: ")[1]. split(")"

)[0])

14 except:

15 pass

16 data = {"name": name , "description": description , "parent

id": parent id}
17 headers = {"Authorization": f"Bearer {access token }"}
18 try:

19 response = requests.post(

20 f"{API URL}/category/create",
21 headers=headers ,

18

22 json=data

23)

24 if response.status code == 201:

25 dialog.destroy ()

26 CTkMessagebox(

27 title="Success",

28 message="Category added successfully",

29)

30 fetch categories ()

31 except Exception as e:

32 CTkMessagebox(

33 title="Error", message=f"An error occurred: {str(
e)}", icon="cancel"

34)

Listing 23: Category Creation Dialog

Key features of category management.py include:

– A searchable table displaying category ID, name, description, product count,
creation date, and parent category, with dynamic data fetching from /admin/

categories.

– Action buttons for adding, editing, and deleting categories, with dialogs for
creating/editing categories that support name, description, and parent cate-
gory selection.

– Search functionality to filter categories by name, enhancing usability for large
datasets.

– Confirmation dialogs for deletions, with specific error handling for categories
linked to products.

– Responsive design with a green-themed header and alternating row colors for
readability.

2.6.12 Admin System Statistics

The system statistics interface, implemented in components/admin/system

statistics.py, provides administrators with key performance indicators and
analytics through interactive charts. It integrates with the /admin/stats end-
points.

1 def fetch statistics ():

2 headers = {"Authorization": f"Bearer {access token }"}
3 try:

4 response = requests.get(f"{API URL}/admin/stats/
users", headers=headers)

5 if response.status code == 200:

6 stats = response.json()

7 user count = stats.get("total users", 0)

8 owner count = stats.get("total shop owners",

0)

9 user card.configure(text=str(user count))

19

10 owner card.configure(text=str(owner count))

11 create user growth chart(user graph frame ,

stats.get("user growth", []))

12 except Exception as e:

13 CTkMessagebox(

14 title="Error",

15 message=f"Failed to connect to server: {e}",
16 icon="cancel",

17)

Listing 24: Statistics Fetching

Key features include:

∗ Statistic cards displaying total users, shop owners, and revenue, updated
dynamically via API calls.

∗ Tabbed interface for user growth, revenue, and product sales charts, using
Matplotlib for visualization.

∗ Scrollable charts with mouse wheel support, showing user growth over
time, revenue trends, and top-selling products.

∗ Date range filtering (Last 7 Days, 30 Days, 90 Days, All Time) for cus-
tomized analytics.

∗ Visual feedback with color-coded bars and data labels for clarity.

2.6.13 API Integration

Frontend-backend communication is managed via utils/api requests.py,
handling HTTP requests with JWT authentication. Error handling en-
sures user feedback through CTkMessagebox.

2.6.14 Non-Functional Requirements

· Security: JWT token validation and role-based routing prevent unau-
thorized access, with immediate redirection for non-admin users in the
admin dashboard.

· Usability: Consistent dark theme, intuitive card-based navigation
in the admin dashboard, and dialog-based interactions in category
management enhance user experience.

· Scalability: Modular frame-based architecture and reusable compo-
nents support future feature additions.

· Performance: Optimized data fetching with periodic refreshes and
efficient table rendering minimize latency, even for large category datasets.

· Reliability: Comprehensive error handling with user-friendly mes-
sages ensures robust operation during network or server issues.

3 Technical Implementations

3.1 Project Structure

The codebase is organized modularly:

20

1 app/

2 backend/

3 models/

4 models.py

5 routes/

6 shop.py

7 payment.py

8 order.py

9 admin.py

10 cart.py

11 auth.py

12 search.py

13 category.py

14 product.py

15 schemas/

16 category.py

17 product.py

18 order.py

19 payment.py

20 shop.py

21 user.py

22 utils/

23 hashing.py

24 security.py

25 database.py

26 main.py

27 dummy data.py

28 frontend/

29 components/

30 auth/

31 login.py

32 register.py

33 forgot pass.py

34 shop/

35 create shop.py

36 view shop.py

37 product/

38 create product.py

39 view product.py

40 edit product.py

41 admin/

42 dashboard.py

43 category management.py

44 user management.py

45 Tisch

46 shop owner management.

py

47 product management.py

48 system statistics.py

49 owner/

50 owner dashboard.py

21

51 iama

52 owner products.py

53 owner orders.py

54 dashboard.py

55 user details.py

56 user orders.py

57 user payments.py

58 utils/

59 api requests.py

60 main.py

61 core/

62 config.py

63 static/

64 test/

65 test admin.py

66 test auth.py

67 test cart.py

68 test category.py

69 test order.py

70 test payment.py

71 test product.py

72 test search.py

73 test shop.py

74 conftest.py

Listing 25: Project Structure

3.2 Payment Integration

The payment system in payment.py supports credit card validation,
with fields for card number, CVV, and expiry date. Sensitive data is
encrypted before storage, accessed via components/user payments.py

in the frontend.

1 def add payment method(api url , token , payment data

):

2 if not token:

3 return None , {"detail": "Access token not

provided. Please log in."}
4 headers = {"Authorization": f"Bearer {token }"}
5 try:

6 response = requests.post(

7 f"{api url}/payment/add", headers=

headers , json=payment data

8)

9 return response.status code , response.json

()

10 except requests.exceptions.RequestException as

e:

11 return None , {"detail": str(e)}
Listing 26: Payment Creation API Call

22

3.3 Testing Implementation

Comprehensive unit and integration tests were implemented in the
test/ directory using Pytest, ensuring the reliability and correctness
of the backend APIs, database interactions, and business logic. The
conftest.py file configures the test environment with an in-memory
SQLite database and FastAPI’s TestClient for API testing.

1 engine = create engine(

2 "sqlite :///: memory:",

3 connect args={"check same thread": False },
4 poolclass=StaticPool ,

5 echo=False ,

6)

7

8 @pytest.fixture(name="db session", scope="function"

)

9 def db session fixture ():

10 SQLModel.metadata.create all(engine)

11 with Session(engine) as session:

12 try:

13 yield session

14 finally:

15 session.close()

16 SQLModel.metadata.drop all(engine)

Listing 27: Test Environment Setup

Tests are organized by functionality, covering authentication, cart
operations, payments, administration, products, orders, categories,
search, and shops. Each test file uses fixtures to set up test data,
ensuring isolation and repeatability.

3.3.1 Authentication Testing (test auth.py)

The test auth.py file tests the authentication system, including user
registration, login, profile management, and token validation.

· test signup success: Verifies successful user registration, checking
password hashing and database storage.

· test signup duplicate email: Ensures duplicate email registration
fails with a 400 status code.

· test login success: Tests successful login with correct credentials,
verifying JWT token generation.

· test token expiration: Simulates token expiration to ensure 401 re-
sponses for expired tokens.

· test update profile: Confirms profile updates for username, email,
and phone number.

1 def test signup success(client , db session):

2 user data = {
3 "username": "testuser",

4 "email": "test@example.com",

23

5 "phone number": "1234567890",

6 "password": "testpassword123",

7 }
8 response = client.post("/auth/signup", json=

user data)

9 assert response.status code == 200

10 assert response.json()["message"] == "User

created successfully"

11 user = db session.exec(select(User).where(User.

email == user data["email"])).first()

12 assert verify password("testpassword123", user.

password)

Listing 28: Signup Test

3.3.2 Cart Testing (test cart.py)

The test cart.py file tests cart operations, including adding items, re-
trieving cart contents, updating quantities, removing items, and check-
ing out.

· test add to cart: Verifies adding a product to the cart with valid
data.

· test get cart items: Ensures cart items are retrieved correctly with
expected quantities.

· test update cart item: Tests updating cart item quantities.

· test remove from cart: Confirms item removal from the cart.

· test checkout cart: Validates the checkout process, ensuring order
creation.

· test add to cart invalid product: Tests error handling for non-existent
products.

· test add to cart insufficient stock: Ensures stock validation dur-
ing cart addition.

1 def test add to cart(client , test product , auth

headers):

2 response = client.post(

3 "/cart/add",

4 headers=auth headers ,

5 json={"product id": test product.id , "shop

id": test product.shop id, "quantity": 2},
6)

7 assert response.status code == 200

8 assert response.json()["message"] == "Item

added to cart successfully"

Listing 29: Add to Cart Test

3.3.3 Payment Testing (test payment.py)

The test payment.py file tests payment method creation, validation,
and encryption.

24

· test payment create validation: Verifies validation for card number,
CVV, and expiry date, including error cases.

· test payment read: Ensures payment data is correctly read with de-
crypted card numbers.

· test expiry date validation: Tests expiry date validation for past
and future dates.

· test card encryption: Confirms card number encryption and decryp-
tion.

1 def test payment create validation ():

2 valid data = {
3 "payment method": "Credit Card",

4 "card number": "4111111111111111",

5 "cvv": "123",

6 "expiry date": f"{(datetime.now().month):02
d}/{str(datetime.now().year + 1)[2:]}",

7 }
8 payment = PaymentCreate

*validdata)assertdecryptcardnumber(payment.cardnumber) ==
validdata[”cardnumber”]

Listing 30: Payment Validation Test

3.3.4 Admin Testing (test admin.py)

The test admin.py file tests administrative functionalities, including
user management, shop owner management, and statistics.

· test get all users as admin: Verifies admin access to user lists.

· test get all users as regular user: Ensures non-admins are denied
access.

· test get shop owners: Tests retrieval of shop owner data.

· test delete shop owner: Confirms shop owner deletion.

· test get user statistics: Validates user growth and count statistics.

· test delete admin account fail: Ensures admins cannot delete their
own accounts.

1 def test get all users as admin(client , admin token

):

2 response = client.get("/admin/users", headers={
"Authorization": f"Bearer {admin token }"})

3 assert response.status code == 200

4 assert isinstance(response.json(), list)

Listing 31: Admin User List Test

3.3.5 Product Testing (test product.py)

The test product.py file tests product schema validation and data
handling.

25

· test product create: Verifies product creation with required and op-
tional fields.

· test product read schema: Ensures correct mapping of product data,
including categories.

· test product update schema: Tests partial product updates.

· test product image schemas: Validates product image creation and
reading.

1 def test product create schema ():

2 product data = {
3 "shop id": 1,

4 "category id": 2,

5 "name": "Test Product",

6 "description": "Test Description",

7 "price": 9.99,

8 "stock": 10,

9 }
10 product = ProductCreate

*productdata)assertproduct.name ==
”TestProduct”assertproduct.price == 9.99

Listing 32: Product Creation Schema Test

3.3.6 Order Testing (test order.py)

The test order.py file tests order creation, retrieval, cart integration,
and status updates.

· test create order: Verifies order creation with payment and delivery
details.

· test get user orders: Ensures users can retrieve their order history.

· test get shop orders: Tests shop-specific order retrieval.

· test add to cart: Confirms cart addition for orders.

· test cart checkout: Validates cart checkout with order generation.

· test update order status: Tests order status updates.

· test delete order: Ensures order deletion.

1 def test create order(client , test user , test shop ,

test product , test payment):

2 login response = client.post("/auth/login",

json={"email": "test@example.com", "password": "

password123"})
3 token = login response.json()["access token"]

4 order data = {
5 "shop id": test shop.id ,

6 "payment id": test payment.id ,

7 "items": [{"product id": test product.id , "

quantity": 2}],
8 "delivery address": "1 Westminster Bridge

Rd, London SE1 7PB, UK",

9 }

26

10 response = client.post("/order/", json=order

data , headers={"Authorization": f"Bearer {token }
"})

11 assert response.status code == 200

12 assert response.json()["shop id"] == test shop.

id

Listing 33: Order Creation Test

3.3.7 Category Testing (test category.py)

The test category.py file tests category CRUD operations and access
control.

· test create category: Verifies category creation and duplicate han-
dling.

· test create category unauthorized: Ensures non-admins cannot cre-
ate categories.

· test get category: Tests category retrieval by ID.

· test update category: Confirms category updates and duplicate name
checks.

· test delete category: Validates category deletion.

· test get all categories: Ensures retrieval of all categories.

1 def test create category(client , db session):

2 admin = create test admin(db session)

3 headers = get auth headers(admin)

4 response = client.post("/category/create",

headers=headers , json={"name": "Electronics"})
5 assert response.status code == 200

6 assert response.json()["name"] == "Electronics"

Listing 34: Category Creation Test

3.3.8 Search Testing (test search.py)

The test search.py file tests the search functionality for shops and
products.

· test empty search: Verifies empty search returns all results.

· test search by shop name: Tests shop name search.

· test search by product name: Ensures product name search function-
ality.

· test search by product description: Tests searching within product
descriptions.

· test search by category: Validates category-based product search.

· test search with nonexistent name: Confirms empty results for nonex-
istent names.

· test search with case insensitive: Tests case-insensitive search.

· test search special characters: Ensures special character handling.

27

1 def test search by shop name(client , db session):

2 shop = Shop(name="Bakery Shop", owner id=1,

address="Test Address", latitude =0.0, longitude

=0.0)

3 db session.add(shop)

4 db session.commit ()

5 response = client.get("/search /?name=Bakery")

6 assert response.status code == 200

7 assert response.json()[0]["name"] == "Bakery

Shop"

Listing 35: Shop Name Search Test

3.3.9 Shop Testing (test shop.py)

The test shop.py file tests shop management functionalities.

· test create shop success: Verifies shop creation with geocoding.

· test get all shops: Ensures retrieval of all shops.

· test get shop by id: Tests shop retrieval by ID.

· test update shop: Confirms shop updates with geocoding.

· test delete shop: Validates shop deletion.

· test get owner shops: Tests retrieval of shops by owner.

· test get shop stats: Ensures shop statistics retrieval.

1 def test create shop success(client , db session):

2 test user = User(email="test@example.com",

username="testuser", password="testpass123",

phone number="1234567890", role="shop owner")

3 db session.add(test user)

4 db session.commit ()

5 access token = create access token({"sub": str(

test user.id)})
6 headers = {"Authorization": f"Bearer {access

token }"}
7 shop data = {"name": "Test Shop", "description"

: "A test shop", "address": "1600 Amphitheatre

Parkway , Mountain View , CA"}
8 response = client.post("/shops/create", json=

shop data , headers=headers)

9 assert response.status code == 200

10 assert response.json()["name"] == shop data["

name"]

Listing 36: Shop Creation Test

4 Conclusion

Through Scrum methodology and strict role definition, a stable e-
commerce platform was developed. The backend provides scalable

28

APIs, secure authentication, validation of data, and proper testing,
while the frontend provides user-friendly, role-based interfaces for au-
thentication, shop, product, owner, and admin management. Admin
dashboard and category management interfaces offer superior admin
control with responsive layouts and advanced features. System reli-
ability is ensured by exhaustive unit and integration tests. Modular
structure, CI/CD procedures, security features, and a good test suite
ensure a high-quality, scalable system, meeting the needs of customers,
shop owners, and administrators.

29

	Scrum Implementation
	Sprint Organization
	Development Process
	CI/CD Pipeline

	Team Contributions
	Backend Development
	API Architecture
	Authentication and Authorization
	Security Measures

	Database Design
	Data Validation with Schemas
	Dummy Data Implementation
	Key Functionalities
	Shop Management
	Order and Cart Management
	Admin Dashboard
	Search Functionality

	Frontend Development
	User Authentication
	Shop Management
	Product Management
	Shop Owner Dashboard
	Shop Owner Product Management
	Shop Owner Order Management
	Admin Dashboard
	Admin Product Management
	Admin Shop Owner Management
	Admin User Management
	Admin Category Management
	Admin System Statistics
	API Integration
	Non-Functional Requirements

	Technical Implementations
	Project Structure
	Payment Integration
	Testing Implementation
	Authentication Testing (testauth.py)
	Cart Testing (testcart.py)
	Payment Testing (testpayment.py)
	Admin Testing (testadmin.py)
	Product Testing (testproduct.py)
	Order Testing (testorder.py)
	Category Testing (testcategory.py)
	Search Testing (testsearch.py)
	Shop Testing (testshop.py)

	Conclusion

