Shopping Application Methodology and Contribution

23085483 — Tran Duy Anh
23085487 — Nguyen Nhat Minh
23085492 — Nguyen Duc Trung

April 23, 2025

Contents
1 Scrum Implementation 3
1.1 Sprint Organization 3
1.2 Development Process 3
1.2.1 CI/CD Pipeline 3
2 Team Contributions 4
2.1 Backend Development 4
2.1.1 API Architecture 4
2.1.2 Authentication and Authorization 4
2.1.3 Security Measures 5
2.2 Database Designo)
2.3 Data Validation with Schemas 6
2.4 Dummy Data Implementation 7
2.5 Key Functionalities oo 8
2.5.1 Shop Management 8
2.5.2 Order and Cart Management 9
2.5.3 Admin Dashboard 9
2.5.4 Search Functionality, 10
2.6 Frontend Development oo 10
2.6.1 User Authentication 11
2.6.2 Shop Management 12
2.6.3 Product Management 12
2.6.4 Shop Owner Dashboard 12
2.6.5 Shop Owner Product Management 13
2.6.6 Shop Owner Order Management 13
2.6.7 Admin Dashboard 14
2.6.8 Admin Product Management 15
2.6.9 Admin Shop Owner Management 16
2.6.10 Admin User Management 17
2.6.11 Admin Category Management 18
2.6.12 Admin System Statistics 19
2.6.13 API Integration 20
2.6.14 Non-Functional Requirements 20

1

3 Technical Implementations 20

3.1 Project Structure 20
3.2 Payment Integration Lo 22
3.3 Testing Implementation00 23
3.3.1 Authentication Testing (test_auth.py) 23
3.3.2 Cart Testing (test_cart.py) « v v v v v v v v v i 24
3.3.3 Payment Testing (test_payment.py) 24
3.3.4 Admin Testing (test_admin.py) 25
3.3.5 Product Testing (test_product.py) o o o . .. 25
3.3.6 Order Testing (test_order.py) v v v v v v vt . 26
3.3.7 Category Testing (test_category.py) . . . « « « v v v v v oo . . 27
3.3.8 Search Testing (test_search.py) 27
3.3.9 Shop Testing (test_shop.py) - - - « « « v v v v v v v v e 28

4 Conclusion

N

Abstract

This document outlines the development process and team feedback for an e-
commerce application built using a Python frontend based on CustomTkinter and
a FastAPI backend. The Scrum process enabled iterative development, with feed-
back including backend infrastructure, database schema, security, testing, and a
responsive GUI. The frontend provides role-based interfaces for customers, shop
owners, and admin users, which interface seamlessly with the backend via REST-
ful APIs. Comprehensive unit and integration testing ensures system reliability.
We introduce the system architecture, core functionalities, testing plan, and imple-
mentation, pointing out the frontend’s authentication, shop, product, owner, and
admin management functionalities.

1 Scrum Implementation

1.1 Sprint Organization

The project utilizes the Scrum method to supply a dynamic and collaborative develop-
ment process. Being a three-member team, the work is organized into incremental sprints,
with each member focusing on a primary area of expertise:

e Trung: Responsible for system architecture, supporting development, creating and
managing all system diagrams (Use Case, Class, Sequence), and writing unit and
integration tests.

e Minh: Focused on building the frontend user interface using CustomTkinter, en-
suring an intuitive and responsive design.

e Duy Anh: Led backend development, handling database modeling, API routing,
implementing security and data validation layers, and ensuring high test coverage.

Each sprint concludes with a review and retrospective session, enabling early issue
detection and continuous process improvement. The Scrum approach balances flexibil-
ity and structure, fostering creativity while maintaining discipline to deliver a scalable
application.

1.2 Development Process
1.2.1 CI/CD Pipeline

To maintain a high development pace and ensure confidence in deployments, a CI/CD
pipeline was implemented. This pipeline triggers automated tests and deployment scripts
with each code push.

stages:
- install
- test
- deploy

Listing 1: CI/CD Stages

The pipeline is configured using GitLab CI/CD. Tests are executed using Pytest, and
artifacts are stored for test result reporting.

V]

2 Team Contributions

2.1 Backend Development
2.1.1 API Architecture

A modular backend was developed using FastAPI, incorporating RESTful routing for
scalability. The architecture separates business logic through routers, supporting func-
tionalities such as shop management, product handling, order processing, payments, cart
operations, search, categories, and administration.

app-include _router (search.router, prefix="/search", tags=["search
n])
app.include _router (auth.router, prefix="/auth", tags=["auth"])
3 app.include _router (payment.router, prefix="/payment", tags=["

Sl

payment"])
app-include _router (shop.router, prefix="/shops", tags=["shops"])

app.include _router (product.router, prefix="/product", tags=["
product"])

app.include _router (category.router, prefix="/category", tags=["
category"])

app.include _router (order.router, prefix="/order", tags=["order"])

app.include _router (cart.router, prefix="/cart", tags=["cart"])

app.include router (admin.router, prefix="/admin", tags=["admin"])

Listing 2: API Routing Example

Each router is organized by domain responsibility, such as /shops for shop manage-
ment, /order for order processing, and /admin for administrative functions, ensuring
efficient collaboration and ease of scalability.

2.1.2 Authentication and Authorization

A role-based authentication system (customer, shop_owner, admin) was implemented
using OAuth2, with password hashing via Berypt and JWT access tokens. The
hashing.py file handles, 2app handles secure password hashing and token generation.

def create_access_token(data: dict):
to_encode = data.copy()
expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN._
EXPIRE _MINUTES)
to_encode.update ({"exp": expire})
encoded_jwt = jwt.encode(to_encode, SECRET _KEY, algorithm=
ALGORITHM)

return encoded_jwt

Listing 3: JWT Token Creation

This authentication system integrates with auth.py to provide endpoints for regis-
tration, login, and user profile management, incorporating security checks like email
duplication prevention and password verification.

N

N

2.1.3 Security Measures

Advanced security measures were implemented, including encryption of sensitive data
such as credit card numbers and CVVs using the Fernet library in security.py. Encryp-
tion keys are derived from environment variables for enhanced security.

def encrypt_card_number (card _number: str) -> str:
return fernet.encrypt(card_number.encode()).decode ()

def decrypt_card_number (encrypted_card: str) -> str:
return fernet.decrypt(encrypted_card.encode()).decode ()

Listing 4: Card Number Encryption

Data validation was integrated into schemas (payment.py) to ensure the validity of
card numbers, CVVs, and expiry dates before storage.

class PaymentCreate (BaseModel):

payment method: str = Field(..., min_length=3, max_length=50)

card _number: str = Field(..., min_length=12, max_length=19,
pattern=r""\d+$")

cvv: str = Field(..., min_length=3, max_length=3, pattern=r"
“\d+$")

expiry_date: str

@field validator ("card _number")
@classmethod
def encrypt_card(cls, value):

return encrypt_card_number (value)

Listing 5: Payment Validation

2.2 Database Design

The database schema was designed using SQLModel and MySQL, ensuring robust relation-
ships and referential integrity between major entities: User, Shop, Product, Order,
Payment, Cart, and Category.

Each entity is mapped to a table with appropriate primary keys, foreign keys, and
relationships. The design supports real-world e-commerce workflows such as user authen-
tication, managing shops and products, processing payments and orders, and handling
shopping carts.

The main models include:

e User: Holds user information (email, username, phone) and is related to Shops,
Orders, Payments, and Carts.

e Shop: Linked to a User (shop owner) and holds Products.

e Product: Belongs to a Shop and optionally a Category; can have multiple Product
Images.

e Order and OrderItem: Track purchase details, tied to User, Shop, Payment, and
Products.

e Payment: Linked to User; stores payment information securely.
e Cart and CartItem: Allow users to add products to cart before checkout.

e Category: Classifies products into meaningful groups.

The following Python code snippet demonstrates the definition of the Shop model:

1 class Shop(SQLModel, table=True):
id: Optional[int] = Field(default=None, primary_key=True)

N

3 owner _id: int = Field(foreign_key="user.id")

4 name: str = Field(unique=True, index=True)

5 description: Optionall[str] = None

6 image _url: Optional[str] = None

7 address: str

8 latitude: float

9 longitude: float

10 created _at: datetime = Field(default_factory=datetime.utcnow)

11

12 owner: User = Relationship(back_populates="shops")

13 products: List["Product"] = Relationship(back_populates="shop
")

Listing 6: Shop Model

To illustrate the complete database design, the Entity-Relationship Diagram (ERD)
is shown below:

Indexes were applied to fields like email (User) and name (Shop, Category) to optimize
query performance, while relationships facilitate efficient access to related data.

2.3 Data Validation with Schemas

Pydantic was utilized in the schemas/ directory to validate input and output data, en-
suring consistency and security. For example, the UserCreate schema enforces password
length and phone number format.

1 class UserCreate (BaseModel):
username: Sstr

email: EmailStr

| phone _number: str

5 password: str

V)

7 @field validator ("password")

8 @classmethod

9 def password _must_not_be_empty(cls, v):

10 if len(v) < 8:

11 raise ValueError ("Password must be at least 8
characters long")

12 return v

Listing 7: User Creation Schema
Schemas like PaymentCreate, OrderCreate, and ProductRead were designed to map

accurately to database models, handling optional fields and sensitive data (e.g., card
number encryption).

:] usar v
id INT
#username VARCHAR({255)

» email W ARCHAR (255) I W i v
|_ ————————— 44 password ¥ ARCHAR(255) | i INT
| # phone_num ber VARCHAR(255) I @ owner id INT
| 5 H——— -
| role VARCHAR(255) | L 1] ¥ name VARCHAR (255)
I created_at DATETIME I description VARCHAR(255)
S
| | image_ud VARCHAR(255)
ke
I T Jl- * address V ARCHAR{255)
1 I M |~ —#| latitude FLOAT
M
o 0 v | _ order hd | > lengitude FLOAT
payme ; |
o I id INT | > created_at DATETIME
| @ user_id INT | >
N)
user_id INT I @ shop_id INT I -
» paym ent_method VARCH AR(255) F—— === & payment id INT | T
» card_number VARCHAR(255) -— I > total_price FLGAT I I
» expiry_date VARCHAR{255
Spiny_ga (255) | # shipping_price FLOAT ———1 |
» cvv VARCHAR (255
e (255) I > status VARCHAR(255) I
> created_at DATETIME A Ir _ | delivery_address vARGHAR(25S) |
S
| | > delivery_latitude FLOAT I
I I > delivery_longitude FLOAT |
| | > created_at DATETIME I
| |
> |
re e _I ______ J |
| ' |
| [R I
I | |
| | |
| 1 |
I % I _Jcategory ¥
| "] orderitem ¥ | id INT
I id INT I » name VARCHAR(255)
| @ order_id INT | L
I @ product_id INT ——q I *
I » quantity INT I | |
|
| * price FLOAT | | I
| > ' | |
| ' 1 |
| }) |
I | j product v I
1 | id INT |
™ |) |
j = = | @ shop_id INT |
ca
L—— . B
 category_id INT -
id INT tegory | j productimage ¥
name VARCHAR(255]
@ user_id INT (25%) id INT
description VARCHAR(255) .
» created_at DATETIME — — — — —<d ¥ product_id INT
> |———— -y Pnee FLoAT M———— >image_ur VARCHAR(255)
| # stock INT »
.
T I > created_at DATETIME
!__ ———— | >
|
* |
|
| cartitem ¥ |
id INT I
@ cart_id INT I
@ product_jd INT ————
quantity INT

price FLOAT

Figure 1: Database

2.4 Dummy Data Implementation

Dummy data was implemented in dummy data.py to support testing and demonstration,
including users, shops, products, orders, and carts.

1 def insert_dummy_data(session: Session):

V)

1

if not session.exec(select(User).where(User.email
user@example.com")).first ():
customer = User(
username="string",
email="user@example.com",
password=hash _password("string"),
phone _number="1234567890",
role="customer",

)
session.add (customer)
session.commit ()

Listing 8: Dummy Data Loader

Conditional insertion prevents duplicates, ensuring the database is ready for testing
and demonstration scenarios.

2.5 Key Functionalities
2.5.1 Shop Management

Endpoints in shop.py were developed for shop management, including creation, updates,
deletion, and statistics retrieval. The /shops/create endpoint integrates geocoding to
automatically derive coordinates from addresses and supports image uploads.

@router .post("/create", response_model=ShopRead)
def create_shop(

name: str = Form(...),
description: str = Form(None),
address: str = Form(...),

file: UploadFile
session: Session

File (None),
Depends (get _session),

current _user: User = Depends (get_current _user),
)

geolocator = Nominatim(user_agent="shop_locator")

location = geolocator.geocode (address)

if not location:

raise HTTPException(status_code=400, detail="Invalid
address")

shop = Shop(
name=name ,
description=description,
address=address,
latitude=location.latitude,
longitude=location.longitude,
owner _id=current _user.id,

)

session.add (shop)

session.commit ()

Listing 9: Shop Creation Endpoint

The /shops/stats/ [shop_id] endpoint provides revenue and order count insights, aid-
ing shop owners in effective management.

1

2

2.5.2 Order and Cart Management

Order and cart processing systems were implemented in order.py and cart.py. The
/cart/checkout endpoint groups items by shop, calculates shipping fees based on dis-
tance, and creates separate orders.

@router.post ("/checkout")
def checkout _cart(
checkout _data: dict,

session: Session = Depends(get_session),
current _user: User = Depends(get_current_user),
)
delivery_address = checkout_data.get("delivery_address")

payment _id = checkout _data.get("payment _id")
selected_items = checkout_data.get("selected_items", [])
if not delivery_address or not payment_id:
raise HTTPException (
status _code=400,
detail="Missing required parameters: delivery_address
and payment _id",
)

... (logic for grouping items by shop and creating orders)

Listing 10: Checkout Endpoint

Shipping fees are calculated based on geographic distance with a capped maximum,
ensuring fairness for users.

2.5.3 Admin Dashboard

Administrative endpoints in admin.py were developed for user management, shop owner
oversight, category management, and system statistics. The /admin/stats/revenue end-
point provides detailed revenue insights from products and shipping.

@router.get("/stats/revenue")
def get _revenue _statistics(

session: Session = Depends(get_session),
current _user: User = Depends(get_current_user),
):
verify_admin (current _user)
orders = session.exec(select(0Order)).all()
total _product _revenue = sum(order.total_price * 0.05 for
order in orders)
total _shipping _revenue = sum(order.shipping_price for order

in orders)
return {

"total revenue": round(total _product_revenue + total_
shipping _revenue, 2),

"product _revenue": round(total _product_revenue, 2),

"shipping revenue": round(total shipping_revenue, 2),

Listing 11: Revenue Statistics Endpoint

2

3

4

1

2

Statistics on user growth and top-selling products support data-driven administrative
decisions.

2.5.4 Search Functionality

A flexible search system was implemented in search.py, enabling searches for shops and
products by name or category, with filtering by search type (shops, products, or both).

@router.get("/", response_model=List [Union[Shop, Product]l])
def search(
name: str = Query(None, description="Name to search"),
category: str = Query(None, description="Category to filter
by (for products)"),
search_type: str = Query("both", description="Search type: °’

shops’, ’products’, or ’both’"),
db: Session = Depends(get_session),
)
results = []

if search_type in ["shops", "both"]:
shop _query = select (Shop)
if name:
shop_query = shop_query.where(Shop.name.ilike (£f"%{
name }%"))
results.extend (db.exec (shop_query).all())
if search_type in ["products", "both"]:
product _query = select(Product)
if name:
product _query = product_query.where (
or _(Product.name.ilike (f"%{name}%"), Product.
description.ilike (£"%{name}%"))
)
results.extend (db.exec (product_query).all())
return results

Listing 12: Search Endpoint

2.6 Frontend Development

The frontend, developed using CustomTkinter, provides a modern, dark-themed user
interface tailored to customers, shop owners, and administrators. The main.py file or-
chestrates frame-based navigation, enabling seamless transitions between views while
enforcing role-based access control.

def switch_frame(frame_name, *args):
global access_token, user_role
print (f"switch_frame called with frame_name={frame _name},
args={args}")

if frame_name == "dashboard_bypass":
token _to_use = args[0] if args and isinstance (args[0],
str) else access_token
frames["dashboard"] = dashboard_frame(root, switch_frame,

API _URL, token_to_use)

10

N

frames ["dashboard"].place(relx=0, rely=0, relwidth=1,
relheight=1)
frames ["dashboard"].tkraise ()
return
... (logic for role-based routing and frame management)

Listing 13: Frame Switching
The UI adopts a consistent dark theme with a primary color (#00c1ff) for accents,
configured as follows:

ctk.set_appearance _mode ("dark")
ctk.set _default _color _theme("blue")

Listing 14: Ul Theme Configuration

2.6.1 User Authentication

User authentication is handled by login.py and register.py in the components/auth
directory. The login interface provides fields for email and password, with validation to
ensure non-empty inputs. Upon successful login, a JWT token is received and passed to
the dashboard.

def login_api(email, password, API _URL):

try:
response = requests.post(
f"{API _URL}/auth/login", json={"email": email, "
password": password}
)
if response.status_code == 200:
data = response. json()

return response.status_code, data
return response.status_code, response. json()
except Exception as e:
return 500, {"detail": f"Request error: {str(e)}"}

Listing 15: Login API Request

The registration interface collects username, email, phone number, and password, with
client-side validation for email format, password length, and phone number digits. The
forgot_pass.py file, intended for password recovery, is currently empty and not integrated
into the application.

Key features include:

e Two-column layout with branding on the left and form on the right.
e Input validation using regular expressions (e.g., email pattern).
e Feedback via CTkMessagebox for errors or success.

e Navigation links to switch between login and registration.

11

2

2.6.2 Shop Management

Shop management is implemented in components/shop/create_shop.py and components/
shop/view_shop.py. The shop creation interface allows users to input a name, description,
address, and upload a logo, with validation and image preview. The shop view displays
details and products in a scrollable grid.

Key features include:

e Form submission to /shops/create with JWT authentication.
e Dynamic product cards with images and view buttons.

e Role-based navigation for shop owners.

2.6.3 Product Management

Product management is handled by components/product/create_product.py, view product
.py, and edit_product.py. Shop owners can create and edit products, while customers
can view details and add items to their cart.

Key features include:

e Dynamic category selection for product creation.
e Quantity selector for cart addition in product view.

e Image handling with preview and resizing.

2.6.4 Shop Owner Dashboard

The shop owner dashboard, implemented in components/owner/owner _dashboard.py, pro-
vides a centralized interface for shop management, displaying shop details, revenue statis-
tics, and recent products.

Key features include:

e Shop information section with logo, name, description, and address.

e Revenue analysis with all-time shipped orders and product revenue.

e Scrollable product table showing image, title, name, category, price, and stock.
e Auto-refresh every 30 seconds for statistics.

The product table creation is shown below:

def create_product_row(product):

row = ctk.CTkFrame (product _rows_frame, fg_color="transparent"
, height=60)

row.pack(fill="x", pady=1)

img_cell = ctk.CTkFrame(row, fg_color="transparent")

img _cell.place(relx=0, rely=0, relwidth=0.15, relheight=1)

img _label = ctk.CTkLabel(img_cell, text="No Image")

img label.place(relx=0.5, rely=0.5, anchor="center")

if product.get("images") and len(product["images"]) > O:
image _url = product["images"][0].get("image _url")

12

1

2

10

if image_url:

resp = requests.get(image_url)

if resp.status_code == 200:
pil_img = Image.open(io.BytesIO(resp.content)).

resize ((40, 40))

tk_img = ImageTk.PhotoImage (pil_img)
img_label.configure (image=tk_img, text="")
img_label.image = tk_img

Listing 16: Product Table Row Creation

2.6.5 Shop Owner Product Management

The product management interface, in components/owner/owner _products.py, allows“‘latex
allows shop owners to view, edit, delete, or archive products. A scrollable table displays
product details, with action buttons for editing and deletion.

Key features include:

e Table columns for image, title, name, category, price, stock, and actions.
e Edit button navigates to edit_product.py.

e Delete button prompts confirmation and offers archiving (setting stock to 0) if
deletion is blocked by orders.
The delete/archive logic is implemented as follows:

def delete_product():
if CTkMessagebox(title="Confirm Delete", message=f"Delete

product {product[’name’]}?", icon="question", option_1="Yes",
option_2="No").get() == "Yes":
headers = {"Authorization": f"Bearer {token}"}

resp = requests.delete(f"{API_URL}/product/delete/{
product [’id’]}", headers=headers)

if resp.status_code == 200:
CTkMessagebox (title="Success", message="Product
deleted successfully", icon="info")
fetch _products ()
elif resp.status_code == 400:

if CTkMessagebox(title="Cannot Delete Product",
message="This product cannot be deleted because it has been
ordered by customers.\n\nWould you like to archive this
product instead (set stock to 0)?7", icon="warning", option_1="
Yes", option_2="No").get() == "Yes":
archive product (product["id"])

Listing 17: Product Deletion/Archiving

2.6.6 Shop Owner Order Management

The order management interface, in components/owner/owner_orders.py, enables shop
owners to view and update orders, with tabs for pending and shipped orders.
Key features include:

13

e Tabbed interface for pending and shipped orders.
e Order cards displaying order ID, date, customer, total, and products.
e Confirm shipment button for pending orders, updating status via /order/update_

status/ [order_id].
e Scrollable frames with mouse wheel support.

The order card creation is shown below:

1 def create_order _card(parent, order _data, is_pending=True):

2 card = ctk.CTkFrame (parent, fg_color="#2b2b2b", corner _radius
=10, height=180)

3 card.pack(fill="x", pady=10, padx=5)

1 order _id = order _data.get("id", "N/A")

5 order _label = ctk.CTkLabel (card, text=f"Order #{order _id}",
font=("Helvetica", 16, "bold"), text_color="white")

6 order _label.pack(anchor="w"

7 if is_pending:

8 def confirm_shipment ():

9 if CTkMessagebox(title="Confirm Shipment", message=f"
Confirm that order #{order _id} has been shipped?", icon="
question", option_1="Yes", option_2="No").get() == "Yes":

10 update _order _status (order _id, "shipped")

11 confirm_btn = ctk.CTkButton(card, text="Confirm Shipment"
, command=confirm_shipment, fg_color="#00cl1ff", hover _color="#
0096ff", height=30)

12 confirm _btn.pack(side="bottom", fill="x"

Listing 18: Order Card Creation

o~

2.6.7 Admin Dashboard

The admin dashboard, implemented in components/admin/dashboard.py, serves as the
central hub for administrators, providing navigation to specialized management interfaces
for products, shop owners, users, categories, and system statistics. It integrates with
backend endpoints in auth.py to verify admin roles and fetch user profiles.

1 def check_admin () :
2 headers = {"Authorization": f"Bearer {access_token}"}
try:
resp = requests.get (f"{API _URL}/auth/role", headers=
headers)
5 if resp.status_code == 200:
6 role _data = resp.json()
7 if role_data.get("role") != "admin":
8 switch_func("dashboard")
9 return False
10 else:
11 switch_func("login")
2 return False
except Exception as e:

14

N

CTkMessagebox (
title="Error",
message=f"Failed to connect to server: {e}",
icon="cancel",

)
return False
return True

Listing 19: Admin Role Verification
Key features include:

e Card-based layout with clickable cards for User Management, Shop Owner Man-
agement, Category Management, and System Statistics, each with distinct colors
for visual clarity.

e Dynamic welcome message displaying the admin’s username fetched from /auth/
profile.
e Role-based access control, redirecting non-admin users to the main dashboard or

login page.
e Responsive design with a gradient header, icon support, and a logout button.

Error handling via CTkMessagebox for server connectivity issues.

2.6.8 Admin Product Management

The product management interface, implemented in components/admin/product management
.py, allows administrators to oversee marketplace products, including approving, reject-
ing, or viewing product details. It integrates with the /admin/products endpoint for data
retrieval and updates.

def approve_product():
selected _items = product_tree.selection ()
if not selected_items:
CTkMessagebox (
title="Warning",
message="Please select a product to approve",

icon="warning",

)
return
product _id = product _tree.item(selected_items[0]) ["values"
1[0l
headers = {"Authorization": f"Bearer {access_token}"}
try:
response = requests.put(

f"{API _URL}/admin/products/{product_id}/approve",
headers=headers

)
if response.status_code == 200:
CTkMessagebox (
title="Success",
message="Product approved successfully",

15

1

2

icon="check",
)
on_filter _change() # Refresh the list
except Exception as e:
CTkMessagebox (
title="Error", message=f"An error occurred: {str(e)}"
, icon="cancel"

)
Listing 20: Product Approval Function

Key features include:

A searchable and filterable table displaying product ID, name, category, price, shop
owner, status, creation date, and image availability.

e Filters for product status (All, Approved, Pending, Rejected) and sorting options
(Newest/Oldest First, Price High/Low).

e Action buttons for approving, rejecting, or viewing product details, with rejection
requiring a reason via a dialog.

e Detailed product view dialog showing images, descriptions, and shop information,
with approve/reject options for pending products.

e Color-coded status tags (green for approved, brown for pending, red for rejected)
for visual clarity.

2.6.9 Admin Shop Owner Management

The shop owner management interface, implemented in components/admin/shop_owner_
management . py, enables administrators to manage shop owner accounts, including viewing
their shops and deleting accounts. It integrates with the /admin/owners endpoint.

def delete_shop_owner ():
selected _item = owner _tree.selection ()
if not selected_item:
CTkMessagebox (
title="Warning",
message="Please select a shop owner to delete",
icon="warning",

)

return
owner _id = owner _tree.item(selected_item[0]) ["values"][O0]
username = owner _tree.item(selected_item[0]) ["values"][1]
confirm = CTkMessagebox(

title="Confirm Deletion",

message=f"Are you sure you want to delete shop owner ’{
username }’?\n\nThis will also delete all their shops and
products .\n\nThis action cannot be undone!",

icon="question",

option_1="Cancel",

option_2="Delete",

16

1

if confirm.get() == "Delete":

headers = {"Authorization": f"Bearer {access_token}"}
response = requests.delete(

f"{API _URL}/admin/owners/{owner _id}", headers=headers
)
if response.status_code == 200:

CTkMessagebox (
title="Success",
message="Shop owner deleted successfully",
icon="check",

)

fetch_shop_owners ()

Listing 21: Shop Owner Deletion

Key features include:

e A table displaying shop owner ID, username, email, phone number, and role, with
search functionality by username or email.

e Action buttons for viewing shops, refreshing data, and deleting owners, with con-
firmation dialogs for deletions.

e A dialog for viewing shops owned by a selected owner, displaying shop name, de-
scription, address, and creation date.

e Visual highlighting for owners with shops and search matches.

2.6.10 Admin User Management

The user management interface, implemented in components/admin/user management.py,
allows administrators to manage regular user (buyer) accounts, including searching and
deleting users. It integrates with the /admin/users endpoint.

def delete_user():
selected _item = user _tree.selection()
if not selected_item:
CTkMessagebox (
title="Warning",
message="Please select a user to delete",
icon="warning",

)

return
user _id = user _tree.item(selected_item[0]) ["values"][0]
username = user_tree.item(selected_item[0]) ["values"][1]
confirm = CTkMessagebox(

title="Confirm Deletion",
message=f"Are you sure you want to delete user ’{username
};7u
. b
icon="question",
option_1="Cancel",
option_2="Delete",

if confirm.get() == "Delete":

17

headers = {"Authorization": f"Bearer {access_token}"}
response = requests.delete(
f"{API_URL}/admin/users/{user_id}", headers=headers

)
if response.status_code == 200:
CTkMessagebox (
title="Success", message="User deleted
successfully", icon="check"

)

fetch_users ()

Listing 22: User Deletion

Key features include:

e A table displaying user ID, username, email, phone number, and role, with search
functionality by username or email.

e Action buttons for refreshing data and deleting users, with confirmation dialogs.

e Visual highlighting for search matches and alternating row colors for readability.

2.6.

11 Admin Category Management

The category management interface, primarily implemented in components/admin
/category management.py, enables administrators to create, edit, delete, and view
product categories, supporting hierarchical structures with parent categories. It in-
tegrates with the /admin/categories and /category endpoints for data operations.

1 def

save_category () :
name = name _entry.get().strip()
description = desc_entry.get("1.0", "end-1c").strip()
parent = parent_var.get ()
if not name:
CTkMessagebox (

title="Warning", message="Category name is
required", icon="warning"
)
return
parent _id = None
if parent != "None':
try:
parent _id = int (parent.split("ID: ") [1].split(")"
) [01)
except:
pass
data = {"name": name, "description": description, "parent
~id": parent_id}
headers = {"Authorization": f"Bearer {access_token}"}
try:
response = requests.post(

f"{API _URL}/category/create",
headers=headers,

18

Key

1

2

json=data
)
if response.status_code == 201:
dialog.destroy ()
CTkMessagebox (
title="Success",
message="Category added successfully",

)
fetch_categories ()
except Exception as e:
CTkMessagebox (
title="Error", message=f"An error occurred: {str(
e)}", icon="cancel"

)
Listing 23: Category Creation Dialog

features of category management.py include:

A searchable table displaying category ID, name, description, product count,
creation date, and parent category, with dynamic data fetching from /admin/
categories.

Action buttons for adding, editing, and deleting categories, with dialogs for
creating/editing categories that support name, description, and parent cate-
gory selection.

Search functionality to filter categories by name, enhancing usability for large
datasets.

Confirmation dialogs for deletions, with specific error handling for categories
linked to products.

Responsive design with a green-themed header and alternating row colors for
readability.

2.6.12 Admin System Statistics

The system statistics interface, implemented in components/admin/system_
statistics.py, provides administrators with key performance indicators and
analytics through interactive charts. It integrates with the /admin/stats end-
points.

def fetch_statistics():
headers = {"Authorization": f"Bearer {access_token}"}
try:
response = requests.get (f"{API _URL}/admin/stats/
users", headers=headers)

if response.status_code == 200:
stats = response. json ()
user _count = stats.get("total_users", 0)
owner _count = stats.get("total_shop_owners",

0)
user _card.configure (text=str (user _count))

19

owner _card.configure (text=str (owner _count))
create _user _growth_chart (user_graph_frame,
stats.get ("user_growth", []))
except Exception as e:
CTkMessagebox (
title="Error",
message=f"Failed to connect to server: {e}",
icon="cancel",

Listing 24: Statistics Fetching

Key features include:

*

Statistic cards displaying total users, shop owners, and revenue, updated
dynamically via API calls.

Tabbed interface for user growth, revenue, and product sales charts, using
Matplotlib for visualization.

Scrollable charts with mouse wheel support, showing user growth over
time, revenue trends, and top-selling products.

Date range filtering (Last 7 Days, 30 Days, 90 Days, All Time) for cus-
tomized analytics.

Visual feedback with color-coded bars and data labels for clarity.

2.6.13 API Integration

Frontend-backend communication is managed via utils/api_requests.py,
handling HTTP requests with JWT authentication. Error handling en-
sures user feedback through CTkMessagebox.

2.6.14 Non-Functional Requirements

- Security: JWT token validation and role-based routing prevent unau-
thorized access, with immediate redirection for non-admin users in the
admin dashboard.

- Usability: Consistent dark theme, intuitive card-based navigation
in the admin dashboard, and dialog-based interactions in category
management enhance user experience.

- Scalability: Modular frame-based architecture and reusable compo-
nents support future feature additions.

- Performance: Optimized data fetching with periodic refreshes and
efficient table rendering minimize latency, even for large category datasets.

- Reliability: Comprehensive error handling with user-friendly mes-
sages ensures robust operation during network or server issues.

3 Technical Implementations

3.1 Project Structure

The codebase is organized modularly:

20

. app/
backend/

: models/
4 models.py

5 routes/

6 shop . py

7 payment . py
8 order.py

9 admin.py

10 cart.py

11 auth.py

12 search.py

13 category.py
14 product .py
15 schemas/

16 category.py
17 product.py
18 order .py

19 payment .py

20 shop . py
21 user .py

22 utils/

23 hashing.py
24 security.py
25 database.py

26 main.py

27 dummy _data.py

28 frontend/

29 components/

30 auth/

31 login.py

32 register.py

33 forgot _pass.py
34 shop/

35 create_shop.py
36 view_shop.py

37 product/

38 create _product.py

39 view_product.py

10 edit _product.py

11 admin/

12 dashboard.py

13 category_management .py

14 user _management.py

15 Tisch

16 shop_owner _management.
py

17 product _management . py

18 system_statistics.py

49 owner/

50 owner _dashboard.py

21

iama
owner _products.py
owner _orders.py
dashboard.py
user _details.py
user _orders.py
user _payments.py
utils/
api_requests.py
main.py
core/
config.py
static/
test/
test _admin.py
test _auth.py
test _cart.py
test_category.py
test _order.py
test _payment.py
test _product.py
test _search.py
test _shop.py
conftest.py

Listing 25: Project Structure

3.2 Payment Integration

The payment system in payment.py supports credit card validation,
with fields for card number, CVV, and expiry date. Sensitive data is
encrypted before storage, accessed via components/user payments.py
in the frontend.

def add_payment_method(api_url, token, payment_data
)

if not token:

return None, {"detail": "Access token not
provided. Please log in."}
headers = {"Authorization": f"Bearer {token}"}
try:
response = requests.post(

f"{api_url}/payment/add", headers=
headers, json=payment_data

)

return response.status_code, response.json

O
except requests.exceptions.RequestException as
e:
return None, {"detail": str(e)}

Listing 26: Payment Creation API Call

22

3.3 Testing Implementation

Comprehensive unit and integration tests were implemented in the
test/ directory using Pytest, ensuring the reliability and correctness
of the backend APIs, database interactions, and business logic. The
conftest.py file configures the test environment with an in-memory
SQLite database and FastAPI’s TestClient for API testing.

engine = create_engine (
"sqlite:///:memory:",
connect _args={"check _same _thread": False},
poolclass=StaticPool,
echo=False,

@pytest.fixture (name="db _session", scope="function"
)
def db_session_fixture():
SQLModel .metadata.create_all(engine)
with Session(engine) as session:
try:
yield session
finally:
session.close ()
SQLModel .metadata.drop_all(engine)

Listing 27: Test Environment Setup

Tests are organized by functionality, covering authentication, cart
operations, payments, administration, products, orders, categories,
search, and shops. Each test file uses fixtures to set up test data,
ensuring isolation and repeatability.

3.3.1 Authentication Testing (test_auth.py)

The test_auth.py file tests the authentication system, including user
registration, login, profile management, and token validation.

- test_signup_success: Verifies successful user registration, checking

password hashing and database storage.

- test_signup duplicate email: Ensures duplicate email registration

fails with a 400 status code.

- test_login success: Tests successful login with correct credentials,

verifying JWT token generation.

- test_token expiration: Simulates token expiration to ensure 401 re-

sponses for expired tokens.

- test_update profile: Confirms profile updates for username, email,

and phone number.

def test_signup_success(client, db_session):

user _data = {
"username": "testuser",
"email": "test@example.com",

23

"phone _number": "1234567890",
"password": "testpasswordl123",
¥
response = client.post("/auth/signup", json=
user _data)
assert response.status_code == 200
assert response.json() ["message"] == "User
created successfully"
user = db_session.exec(select(User).where(User.
email == user _datal["email"])).first ()
assert verify_password("testpasswordl123", user.

password)

Listing 28: Signup Test

3.3.2 Cart Testing (test_cart.py)

The test_cart.py file tests cart operations, including adding items, re-
trieving cart contents, updating quantities, removing items, and check-
ing out.

- test_add to_cart: Verifies adding a product to the cart with valid

data.

- test_get_cart_items: Ensures cart items are retrieved correctly with

expected quantities.

- test_update cart_item: Tests updating cart item quantities.

- test_remove_from_cart: Confirms item removal from the cart.

- test_checkout_cart: Validates the checkout process, ensuring order

creation.

- test_add to_cart_invalid product: Tests error handling for non-existent

products.

- test_add_to_cart_insufficient_stock: Ensures stock validation dur-

ing cart addition.

def test_add_to_cart(client, test_product, auth_

headers) :
response = client.post(
"/cart/add",

headers=auth_headers,
json={"product_id": test_product.id, "shop_
id": test_product.shop_id, "quantity": 2},
)
assert response.status_code == 200
assert response.json() ["message"] =

added to cart successfully"

Listing 29: Add to Cart Test

"Item

3.3.3 Payment Testing (test_payment.py)

The test_payment.py file tests payment method creation, validation,
and encryption.

24

- test_payment_create_validation: Verifies validation for card number,

CVV, and expiry date, including error cases.

- test_payment_read: Ensures payment data is correctly read with de-

crypted card numbers.

- test_expiry date validation: Tests expiry date validation for past

and future dates.

- test_card_encryption: Confirms card number encryption and decryp-

tion.

1 def test_payment_create_validation():

5

3

1

5

valid _data = {

"payment _method": "Credit Card",
"card _number": "4111111111111111",
"CVV“: II123II s

"expiry_date": f"{(datetime.now().month) :02
d}/{str(datetime.now().year + 1)[2:]}",
}
payment = PaymentCreate
xvalidgata)assertdecrypt.ard,umber(payment.card,umber) ==
validgata[” card,umber”]

Listing 30: Payment Validation Test

3.3.4 Admin Testing (test_admin.py)

The test_admin.py file tests administrative functionalities, including
user management, shop owner management, and statistics.

- test_get_all users_as_admin: Verifies admin access to user lists.

- test_get_all users_as regular user: Ensures non-admins are denied

access.

- test_get_shop_owners: Tests retrieval of shop owner data.

- test_delete_shop_owner: Confirms shop owner deletion.

- test_get user statistics: Validates user growth and count statistics.

- test_delete_admin_account_fail: Ensures admins cannot delete their

own accounts.

1 def test _get_all users_as_admin(client, admin_token

) §

response = client.get("/admin/users", headers={
"Authorization": f"Bearer {admin_token}"})
assert response.status_code == 200

assert isinstance(response.json(), list)

Listing 31: Admin User List Test

3.3.5 Product Testing (test_product.py)

The test_product.py file tests product schema validation and data
handling.

25

- test_product_create: Verifies product creation with required and op-

tional fields.

- test_product_read schema: Ensures correct mapping of product data,

including categories.

- test_product_update_schema: Tests partial product updates.

- test_product_image schemas: Validates product image creation and

reading.

def test_product_create_schema():
product _data = {
"shop_id": 1,
"category_id": 2,
"name": "Test Product",
"description": "Test Description",
"price": 9.99,
"stock": 10,
}
product = ProductCreate
*productgyata)assertproduct.name ==
" TestProduct” assertproduct.price == 9.99

Listing 32: Product Creation Schema Test

3.3.6 Order Testing (test_order.py)

The test_order.py file tests order creation, retrieval, cart integration,
and status updates.

- test_create_order: Verifies order creation with payment and delivery

detalils.

- test_get_user orders: Ensures users can retrieve their order history.

- test_get_shop_orders: Tests shop-specific order retrieval.

- test_add_to_cart: Confirms cart addition for orders.

- test_cart_checkout: Validates cart checkout with order generation.

- test_update_order_status: Tests order status updates.

- test_delete_order: Ensures order deletion.

1

def test_create_order(client, test_user, test_shop,
test _product, test_payment):

login _response = client.post("/auth/login",
json={"email": "test@example.com", "password": "
password123"})

token = login_response.json() ["access_token"]

order _data = {
"shop_id": test_shop.id,
"payment _id": test_payment.id,

"items": [{"product _id": test_product.id, "
quantity": 2}1,

"delivery_address": "1 Westminster Bridge
Rd, London SE1 7PB, UK",

}

26

response = client.post("/order/", json=order_

data, headers={"Authorization": f"Bearer {token}
n})

assert response.status_code == 200

assert response.json() ["shop_id"] == test_shop.
id

Listing 33: Order Creation Test

3.3.7 Category Testing (test_category.py)

The test_category.py file tests category CRUD operations and access
control.

- test_create_category: Verifies category creation and duplicate han-

dling.

- test_create_category_unauthorized: Ensures non-admins cannot cre-

ate categories.

- test_get_category: Tests category retrieval by ID.

- test_update_category: Confirms category updates and duplicate name

checks.

- test_delete_category: Validates category deletion.

- test_get_all categories: Ensures retrieval of all categories.

N

def test_create_category(client, db_session):

admin = create_test_admin(db_session)

headers = get_auth_headers (admin)

response = client.post("/category/create",
headers=headers, json={"name": "Electronics"})

assert response.status_code == 200

assert response.json() ["name"] == "Electronics"

Listing 34: Category Creation Test

3.3.8 Search Testing (test_search.py)

The test_search.py file tests the search functionality for shops and
products.

- test_empty_search: Verifies empty search returns all results.

- test_search by shop name: Tests shop name search.

- test_search by product name: Ensures product name search function-

ality:.

- test_search by product _description: Tests searching within product

descriptions.

- test_search by_category: Validates category-based product search.

- test_search with nonexistent name: Confirms empty results for nonex-

istent names.

- test_search with_case_insensitive: Tests case-insensitive search.

- test_search special characters: Ensures special character handling.

27

1

2

def test_search_by_shop_name(client, db_session):
shop = Shop(name="Bakery Shop", owner_id=1,
address="Test Address", latitude=0.0, longitude
=0.0)
db_session.add (shop)
db_session.commit ()

response = client.get("/search/?name=Bakery")

assert response.status_code == 200

assert response.json() [0]["name"] == "Bakery
Shop"

Listing 35: Shop Name Search Test

3.3.9 Shop Testing (test_shop.py)

The test_shop.py file tests shop management functionalities.

- test_create_shop_success: Verifies shop creation with geocoding.

- test_get_all shops: Ensures retrieval of all shops.

- test_get_shop_by_id: Tests shop retrieval by ID.

- test_update_shop: Confirms shop updates with geocoding.

- test_delete_shop: Validates shop deletion.

- test_get_owner _shops: Tests retrieval of shops by owner.

- test_get_shop_stats: Ensures shop statistics retrieval.

~

10

def test_create_shop_success(client, db_session):
test _user = User(email="test@example.com",
username="testuser", password="testpassl123",
phone _number="1234567890", role="shop_owner")
db_session.add(test_user)
db_session.commit ()

access _token = create_access_token({"sub": str(
test _user.id) })

headers = {"Authorization": f"Bearer {access_
token}"}

shop_data = {"name": "Test Shop", "description"

"A test shop", "address": "1600 Amphitheatre
Parkway, Mountain View, CA"}

response = client.post("/shops/create", json=
shop_data, headers=headers)

assert response.status_code == 200

assert response.json() ["name"] == shop_datal"

name"

Listing 36: Shop Creation Test

4 Conclusion

Through Scrum methodology and strict role definition, a stable e-
commerce platform was developed. The backend provides scalable

28

APIs, secure authentication, validation of data, and proper testing,
while the frontend provides user-friendly, role-based interfaces for au-
thentication, shop, product, owner, and admin management. Admin
dashboard and category management interfaces offer superior admin
control with responsive layouts and advanced features. System reli-
ability is ensured by exhaustive unit and integration tests. Modular
structure, CI/CD procedures, security features, and a good test suite
ensure a high-quality, scalable system, meeting the needs of customers,
shop owners, and administrators.

29

	Scrum Implementation
	Sprint Organization
	Development Process
	CI/CD Pipeline

	Team Contributions
	Backend Development
	API Architecture
	Authentication and Authorization
	Security Measures

	Database Design
	Data Validation with Schemas
	Dummy Data Implementation
	Key Functionalities
	Shop Management
	Order and Cart Management
	Admin Dashboard
	Search Functionality

	Frontend Development
	User Authentication
	Shop Management
	Product Management
	Shop Owner Dashboard
	Shop Owner Product Management
	Shop Owner Order Management
	Admin Dashboard
	Admin Product Management
	Admin Shop Owner Management
	Admin User Management
	Admin Category Management
	Admin System Statistics
	API Integration
	Non-Functional Requirements

	Technical Implementations
	Project Structure
	Payment Integration
	Testing Implementation
	Authentication Testing (testauth.py)
	Cart Testing (testcart.py)
	Payment Testing (testpayment.py)
	Admin Testing (testadmin.py)
	Product Testing (testproduct.py)
	Order Testing (testorder.py)
	Category Testing (testcategory.py)
	Search Testing (testsearch.py)
	Shop Testing (testshop.py)

	Conclusion

