diff --git a/api/__pycache__/app.cpython-310.pyc b/api/__pycache__/app.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a694bd589ce1602823bdfe06ffd3bb86cfc44283
Binary files /dev/null and b/api/__pycache__/app.cpython-310.pyc differ
diff --git a/api/run.py b/api/run.py
index 188c22158bd562da0d6f8e190fc4d4780ac6c54b..1b6646a0893de1f2e320c89c4bd2960c5ac28c33 100644
--- a/api/run.py
+++ b/api/run.py
@@ -47,7 +47,7 @@ data_set = pd.DataFrame()
 index_data_set = pd.DataFrame()
 tranning_set = pd.DataFrame()
 result = pd.DataFrame()
-predictions_set = pd.DataFrame()
+predictions_set = pd.DataFrame(columns=["Date","Order_Demand"])
 decompose_set = pd.DataFrame()
 model_settings  = pd.DataFrame()
 
@@ -335,10 +335,19 @@ def setup():
     model.add(LSTM(units=hidden_layer_2,
               activation='relu', return_sequences=False))
 
+    model.add(Dense(units=32))
+
+    model.add(Dense(units=16))
+
+    model.add(Dense(units=4))
+
+    model.add(Dense(units=2))
+
     # Adding the output layer
     model.add(Dense(units=output_units))
     # Compiling model
-    model.compile(optimizer='adam', loss='mean_squared_error')
+    # model.compile(optimizer='adam', loss='mean_squared_error')
+    model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
 
     print(model.input)
     print(model.output)
@@ -349,7 +358,26 @@ def setup():
     start_time = time.time()
 
     # Fitting the RNN to the Training set
-    model_history = model.fit(x_train, y_train, batch_size, epochs)
+    history = model.fit(x_train, y_train, batch_size, epochs)
+
+    # list all data in history
+    print(history.history.keys())
+    # summarize history for accuracy
+    plt.plot(history.history['accuracy'])
+
+    plt.title('model accuracy')
+    plt.ylabel('accuracy')
+    plt.xlabel('epoch')
+    plt.legend(['train', 'test'], loc='upper left')
+    plt.show()
+    # summarize history for loss
+    plt.plot(history.history['loss'])
+
+    plt.title('model loss')
+    plt.ylabel('loss')
+    plt.xlabel('epoch')
+    plt.legend(['train', 'test'], loc='upper left')
+    plt.show()
 
     end_time = time.time()
     execute_time = round((end_time-start_time)/60, 2)
@@ -408,25 +436,7 @@ setup()
 
 # end points declaration
 
-@app.route("/plot_result", methods=['GET'])
-def plot_result():
 
-    # plotting the full data
-    plt.plot(result["Predictions"], color='blue',
-             label='Predicted Order Demand')
-    plt.plot(result["OrderDemand"], color='lightblue', label='Original Price')
-    plt.title('Order Demand Predictions')
-    plt.xlabel(' Date')
-    plt.ylabel('Order Demand')
-    plt.legend()
-    fig = plt.gcf()
-    fig.set_figwidth(20)
-    fig.set_figheight(8)
-    plt.show()
-
-    return "plot complete"
-
-#----------------------------------------------------------------
 
 @app.route("/predict_for_one_product", methods=['POST'])
 def predict_for_one_product():
@@ -569,37 +579,28 @@ def predicpredict_result():
     return predictions_set.to_json(orient='records')
 
 
-@app.route("/plot_order-demands", methods=['GET'])
-def plot_order_demands_total():
-    global raw_data_set
-    sns.lineplot(x='Date', y='Order_Demand',
-                 hue='Warehouse', data=raw_data_set)
-    plt.figure(figsize=(20, 7))
-    plt.xticks(rotation=15)
-    plt.gcf().autofmt_xdate()
-
-    plt.legend()
-    plt.show()
-
-    return "Order demand"
-
-
-@app.route("/plot_order_demand_total", methods=['GET'])
-def plot_order_demands():
-    global data_set
 
-    dtFmt = mdates.DateFormatter('%Y-%b')  # define the formatting
+@app.route("/plot_result", methods=['GET'])
+def plot_result():
 
-    sns.lineplot(x='Date', y='Order_Demand', data=data_set)
-    plt.figure(figsize=(20, 7))
-    plt.gca().xaxis.set_major_formatter(dtFmt)
-    # show every 12th tick on x axes
-    plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=1))
-    plt.xticks(rotation=90, fontweight='light',  fontsize='x-small',)
+    # plotting the full data
+    plt.plot(result["Date"],result["Predictions"], color='blue',
+             label='Predicted Order Demand')
+    plt.plot(result["Date"],result["OrderDemand"], color='lightblue', label='Order Demands')
+    plt.plot(predictions_set["Date"],predictions_set["Order_Demand"], color='orange', label='predicted')
+    plt.title('Order Demand Predictions')
+    plt.xlabel(' Date')
+    plt.ylabel('Order Demand')
     plt.legend()
+    plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=90))
+    fig = plt.gcf()
+    fig.set_figwidth(20)
+    fig.set_figheight(8)
     plt.show()
 
-    return "Order demand"
+    return "plot complete"
+
+#----------------------------------------------------------------
 
 
 @app.route("/products", methods=['GET'])
@@ -636,37 +637,6 @@ def validation():
     return result.to_json(orient='records')
 
 
-@app.route("/forecast_to_date", methods=["POST"])
-def forecast_to_date():
-    global data_set
-    global scaler
-    global index_data_set
-    global model
-
-    # read incomming json data
-    data = request.get_json()
-    date = data['date']
-    new_date = datetime.strptime(date, "%Y-%m-%d").date()
-    new_date = new_date - timedelta(days=(feature_length-1))
-    new_date = new_date.strftime("%Y-%m-%d")
-    print(new_date)
-
-    result = predict_given_date(index_data_set, new_date, feature_length)
-    # df=pd.DataFrame()
-    # # df=pd.DataFrame(data=result,columns=["Prediction"])
-    # df['Date']=pd.date_range(start=new_date,periods=feature_length)
-    # df=df.loc[::-1]
-    # df['Prediction']=result
-
-    # df['Date']= pd.to_datetime(df['Date']).dt.date
-    # df.sort_values('Date', inplace=True)
-    # df['Date']=df['Date'].astype(str)
-    # df=df.set_index(df['Date'])
-    # df=df.tail(1)
-
-    return result
-
-
 @app.route("/forecast_to_range", methods=["POST"])
 def forecast_to_range():
     global data_set
diff --git a/inc/function.php b/inc/function.php
index e1c54d9b7226cf4a199736b4fb50b2d0d69f360c..5368ff118faee9e6c856ce191e96c0365982e8a7 100644
--- a/inc/function.php
+++ b/inc/function.php
@@ -15,8 +15,50 @@ function get_accurecy($conn){
 
 }
 
-function get_layer_1_nodes(){
+function get_layer_1_nodes($conn){
 
+    $sql = "select    input_units from model_settings ORDER BY id DESC LIMIT 1";
+
+    $result = mysqli_query($conn, $sql);
+    $res = mysqli_fetch_assoc($result);
+ 
+
+    return $res['input_units'];
+    
+}
+
+function get_layer_2_nodes($conn){
+
+    $sql = "select    hidden_layer_1 from model_settings ORDER BY id DESC LIMIT 1";
+
+    $result = mysqli_query($conn, $sql);
+    $res = mysqli_fetch_assoc($result);
+ 
+
+    return $res['hidden_layer_1'];
+    
+}
+
+function get_layer_3_nodes($conn){
+
+    $sql = "select    hidden_layer_2 from model_settings ORDER BY id DESC LIMIT 1";
+
+    $result = mysqli_query($conn, $sql);
+    $res = mysqli_fetch_assoc($result);
+ 
+
+    return $res['hidden_layer_2'];
+    
+}
+function get_layer_4_nodes($conn){
+
+    $sql = "select    output_units from model_settings ORDER BY id DESC LIMIT 1";
+
+    $result = mysqli_query($conn, $sql);
+    $res = mysqli_fetch_assoc($result);
+ 
+
+    return $res['output_units'];
     
 }
 
diff --git a/info_box.php b/info_box.php
index fd750de381050d8de459889cb94f28e1878bc6ac..bda6f45cf17cab3c4fb0beb2b44d52ab2a38605d 100644
--- a/info_box.php
+++ b/info_box.php
@@ -8,8 +8,8 @@
               <span class="info-box-icon bg-info elevation-1"><i class="fas fa-brain"></i></span>
 
               <div class="info-box-content">
-                <span class="info-box-text">LSTM Time Steps</span>
-                <a href="user_daily_statement_dash.php"><span class="info-box-number"><?=get_time_steps($conn)?></span></a>
+                <span class="info-box-text">LSTM Nodes</span>
+                <a href="settings_list.php"><span class="info-box-number"><?=get_layer_1_nodes($conn)?>-<?=get_layer_2_nodes($conn)?>-<?=get_layer_3_nodes($conn)?>-<?=get_layer_4_nodes($conn)?></span></a>
               </div>
               <!-- /.info-box-content -->
             </div>
@@ -22,7 +22,7 @@
 
               <div class="info-box-content">
                 <span class="info-box-text">Accurecy</span>
-                <a href="winner_paid_list.php"><span class="info-box-number"><?=get_accurecy($conn)?> %</span></a>
+                <a href="perforemence_list.php"><span class="info-box-number"><?=get_accurecy($conn)?> %</span></a>
               </div>
               <!-- /.info-box-content -->
             </div>
@@ -41,7 +41,7 @@
               <div class="info-box-content">
                   
                 <span class="info-box-text">Times Trained</span>
-                <a href="game_list.php"><span class="info-box-number"><?=get_epochs($conn)?></span></a>
+                <a href="perforemence_list.php"><span class="info-box-number"><?=get_epochs($conn)?></span></a>
               </div>
               <!-- /.info-box-content -->
             </div>
@@ -54,7 +54,7 @@
 
              <div class="info-box-content">
                 <span class="info-box-text">Train Time</span>
-                  <a href="user_list.php"><span class="info-box-number"><?= get_execute_time($conn)?> minutes</span>
+                  <a href="perforemence_list.php"><span class="info-box-number"><?= get_execute_time($conn)?> minutes</span>
                   </a>
               </div>